Publications by authors named "Basistyy R"

Mosquito-borne diseases are a major challenge for Human health as they affect nearly 700 million people every year. Monitoring insects is generally done through trapping methods that are tedious to set up, costly and present scientific biases. Entomological lidars are a potential solution to remotely count and identify mosquito species and gender in real-time.

View Article and Find Full Text PDF

Mosquito-borne diseases are a major challenge for Human health as they affect nearly 700 million people every year and result in over 1 million deaths. Reliable information on the evolution of population and spatial distribution of key insects species is of major importance in the development of eco-epidemiologic models. This paper reports on the remote characterization of flying mosquitoes using a continuous-wave infrared optical remote sensing system.

View Article and Find Full Text PDF

Hard-target lidars rely on the reflectivity and backscattering properties of topographic targets, which are rather difficult to evaluate, resulting in uncertainties when assessing the performance of the instrument. In this work, backscattering properties and hemispherical reflectance of topographic targets are measured in the visible, near-infrared, and mid-infrared spectral ranges. A laboratory setup mimicking a hard-target lidar is used to measure the backscattered signals at various angles of incidence, which are then fitted using a bidirectional reflectance distribution function Phong model.

View Article and Find Full Text PDF

We developed far-IR spectroscopic ellipsometer at the U4IR beamline of the National Synchrotron Light Source in Brookhaven National Laboratory. This ellipsometer is able to measure both, rotating analyzer and full-Mueller matrix spectra using rotating retarders, and wire-grid linear polarizers. We utilize exceptional brightness of synchrotron radiation in the broad spectral range between about 20 and 4000 cm(-1).

View Article and Find Full Text PDF