Publications by authors named "Basilia Acurzio"

The tripartite motif-containing protein 66 (TRIM66, also known as TIF1-delta) is a PHD-Bromo-containing protein primarily expressed in post-meiotic male germ cells known as spermatids. Biophysical assays showed that the TRIM66 PHD-Bromodomain binds to H3 N-terminus only when lysine 4 is unmethylated. We addressed TRIM66's role in reproduction by loss-of-function genetics in the mouse.

View Article and Find Full Text PDF

Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined.

View Article and Find Full Text PDF

Background: Imprinting Control Regions (ICRs) are CpG-rich sequences acquiring differential methylation in the female and male germline and maintaining it in a parental origin-specific manner in somatic cells. Despite their expected high mutation rate due to spontaneous deamination of methylated cytosines, ICRs show conservation of CpG-richness and CpG-containing transcription factor binding sites in mammalian species. However, little is known about the mechanisms contributing to the maintenance of a high density of methyl CpGs at these loci.

View Article and Find Full Text PDF

Background: Beckwith-Wiedemann syndrome (BWS) and Pseudohypoparathyroidism type 1B (PHP1B) are imprinting disorders (ID) caused by deregulation of the imprinted gene clusters located at 11p15.5 and 20q13.32, respectively.

View Article and Find Full Text PDF

ZFP57 is required to maintain the germline-marked differential methylation at imprinting control regions (ICRs) in mouse embryonic stem cells (ESCs). Although DNA methylation has a key role in genomic imprinting, several imprinted genes are controlled by different mechanisms, and a comprehensive study of the relationship between DMR methylation and imprinted gene expression is lacking. To address the latter issue, we differentiated wild-type and Zfp57 hybrid mouse ESCs into neural precursor cells (NPCs) and evaluated allelic expression of imprinted genes.

View Article and Find Full Text PDF

The embryonal renal cancer Wilms tumor (WT) accounts for 7% of all children's malignancies. Its most frequent molecular defect is represented by DNA methylation abnormalities at the imprinted 11p15.5 region.

View Article and Find Full Text PDF

Background: Triploidy is one of the most common chromosome abnormalities affecting human gestation and accounts for an important fraction of first-trimester miscarriages. Triploidy has been demonstrated in a few cases of recurrent pregnancy loss (RPL) but its molecular mechanisms are unknown. This study aims to identify the genetic cause of RPL associated with fetus triploidy.

View Article and Find Full Text PDF

Wilms tumor is an embryonic renal cancer that typically presents in early childhood and accounts for 7% of all paediatric cancers. Different genetic alterations have been described in this malignancy, however, only a few of them are associated with a majority of Wilms tumors. Alterations in DNA methylation, in contrast, are frequent molecular defects observed in most cases of Wilms tumors.

View Article and Find Full Text PDF

Purpose: Beckwith-Wiedemann syndrome (BWS) is a developmental disorder caused by dysregulation of the imprinted gene cluster of chromosome 11p15.5 and often associated with loss of methylation (LOM) of the imprinting center 2 (IC2) located in KCNQ1 intron 10. To unravel the etiological mechanisms underlying these epimutations, we searched for genetic variants associated with IC2 LOM.

View Article and Find Full Text PDF

ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts.

View Article and Find Full Text PDF