Publications by authors named "Bashkirov V"

Background: FLASH Radiotherapy (RT) is an emergent cancer RT modality where an entire therapeutic dose is delivered at more than 1000 times higher dose rate than conventional RT. For clinical trials to be conducted safely, a precise and fast beam monitor that can generate out-of-tolerance beam interrupts is required. This paper describes the overall concept and provides results from a prototype ultra-fast, scintillator-based beam monitor for both proton and electron beam FLASH applications.

View Article and Find Full Text PDF

Background: FLASH Radiotherapy (RT) is an emergent cancer radiotherapy modality where an entire therapeutic dose is delivered at more than 1000 times higher dose rate than conventional RT. For clinical trials to be conducted safely, a precise and fast beam monitor that can generate out-of-tolerance beam interrupts is required. This paper describes the overall concept and provides results from a prototype ultra-fast, scintillator-based beam monitor for both proton and electron beam FLASH applications.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have found that using alternating electric fields (100-300 kHz, 1-4 V/cm) can effectively slow down cancer growth in cell cultures and patients, a method known as tumor treating fields (TTFields).
  • TTFields has been approved by the FDA for treating glioblastoma and malignant pleural mesothelioma, and early trials are exploring its effectiveness for other solid organ cancers.
  • While TTFields alone shows similar survival rates to chemotherapy for recurrent glioblastoma, combining it with chemotherapy may extend survival by nearly 5 months for newly-diagnosed cases; further research in preclinical models is needed to enhance treatment delivery and effectiveness.
View Article and Find Full Text PDF

Interest in CRISPR-Cas12 and CRISPR-Cas13 detection continues to increase as these detection schemes enable the specific recognition of nucleic acids. The fundamental sensitivity limits of these schemes (and their applicability in amplification-free assays) are governed by kinetic rates. However, these kinetic rates remain poorly understood, and their reporting has been inconsistent.

View Article and Find Full Text PDF

Background: Improving the accuracy of relative stopping power (RSP) in proton therapy may allow reducing range margins. Proton computed tomography (pCT) has been shown to provide state-of-the-art RSP accuracy estimation, and various scanner prototypes have recently been built. The different approaches used in scanner design are expected to impact spatial resolution and RSP accuracy.

View Article and Find Full Text PDF

Proton CT (pCT) is a promising new imaging technique that can reconstruct relative stopping power (RSP) more accurately than x-ray CT in each cubic millimeter voxel of the patient. This, in turn, will result in better proton range accuracy and, therefore, smaller planned tumor volumes (PTV). The hardware description and some reconstructed images have previously been reported.

View Article and Find Full Text PDF

Purpose: To reduce imaging artifacts and improve image quality of a specific proton computed tomography (pCT) prototype scanner by combining pCT data acquired at two different incident proton energies to avoid protons stopping in sub-optimal detector sections.

Methods: Image artifacts of a prototype pCT scanner are linked to protons stopping close to internal structures of the scanner's multi-stage energy detector. We aimed at avoiding such protons by acquiring pCT data at two different incident energies and combining the data in post-processing from which artifact-reduced images of the relative stopping power (RSP) were calculated.

View Article and Find Full Text PDF
Article Synopsis
  • Proton computed tomography (pCT) is an advanced imaging technique that directly measures proton relative stopping power (RSP), crucial for calculating doses in proton therapy.
  • The article discusses how Monte Carlo (MC) simulations are essential for pCT studies, covering the necessary tools and scanners used in research as well as various MC simulation platforms.
  • It also details how MC simulations enhance image reconstruction and improve RSP accuracy, including practical applications using a pCT scanner prototype.
View Article and Find Full Text PDF
Article Synopsis
  • Proton computed tomography (pCT) shows promise as an alternative to x-ray computed tomography (CT) for generating relative stopping power (RSP) maps used in proton therapy planning.
  • A study compared RSP accuracy of pCT and dual-energy x-ray CT (DECT) using phantoms, finding pCT had a mean absolute percent error (MAPE) of 0.55%, outperforming DECT’s 0.67%.
  • Monte Carlo simulations revealed specific artifacts in pCT images that impacted accuracy and suggested areas for improvement to enhance pCT performance.
View Article and Find Full Text PDF

Data filtering is crucial for accurate relative stopping power (RSP) reconstruction in proton CT (pCT). In this work, we assess different filters and their performance for the US pCT collaboration prototype pCT system in Monte Carlo (MC) simulations. The potential of using the recently proposed [Formula: see text]-E filter for removing nuclear interactions that occurred in the energy/range detector of the pCT system is investigated.

View Article and Find Full Text PDF

We present a method to accurately predict image noise in proton computed tomography (pCT) using data generated from a Monte Carlo simulation and a patient or object model that may be generated from a prior x-ray CT image. This enables noise prediction for arbitrary beam fluence settings and, therefore, the application of fluence-modulated pCT (FMpCT), which can achieve prescribed noise targets and may significantly reduce the integral patient dose. We extended an existing Monte Carlo simulation of a prototype pCT scanner to include effects of quenching in the energy detector scintillators and constructed a beam model from experimental tracking data.

View Article and Find Full Text PDF

Purpose: Proton CT (pCT) has the ability to reduce inherent uncertainties in proton treatment by directly measuring the relative proton stopping power with respect to water, thereby avoiding the uncertain conversion of X-ray CT Hounsfield unit to relative stopping power and the deleterious effect of X- ray CT artifacts. The purpose of this work was to further evaluate the potential of pCT for pretreatment positioning using experimental pCT data of a head phantom.

Methods: The performance of a 3D image registration algorithm was tested with pCT reconstructions of a pediatric head phantom.

View Article and Find Full Text PDF

Robust methods, such as Tikhonov regularization and Bounded data uncertainty, have been used extensively in relatively small problems involving dense matrices for many decades, but have not been used in large-scale iterative methods for image reconstruction in particle imaging until recently. In this case, robust methods may allow more accurate reconstruction of images in the presence of errors of both the energy measurement of the protons and ions but also in the estimated path taken by the proton or ion through the object. Robust systems may also be used when entire blocks of data are missing, or in low-dose reconstructions using a very small number of particles without substantial loss of image quality.

View Article and Find Full Text PDF

Single-event ion imaging enables the direct reconstruction of the relative stopping power (RSP) information required for ion-beam therapy. Helium ions were recently hypothesized to be the optimal species for such technique. The purpose of this work is to investigate the effect of secondary fragments on the image quality of helium CT (HeCT) and to assess the performance of a prototype proton CT (pCT) scanner when operated with helium beams in Monte Carlo simulations and experiment.

View Article and Find Full Text PDF

A precise relative stopping power map of the patient is crucial for accurate particle therapy. Charged particle imaging determines the stopping power either tomographically - particle computed tomography (pCT) - or by combining prior knowledge from particle radiography (pRad) and x-ray CT. Generally, multiple Coulomb scattering limits the spatial resolution.

View Article and Find Full Text PDF

This simulation study presents the application of fluence field modulated computed tomography, initially developed for x-ray CT, to proton computed tomography (pCT). By using pencil beam (PB) scanning, fluence modulated pCT (FMpCT) may achieve variable image quality in a pCT image and imaging dose reduction. Three virtual phantoms, a uniform cylinder and two patients, were studied using Monte Carlo simulations of an ideal list-mode pCT scanner.

View Article and Find Full Text PDF

Purpose: Proton computed tomography (pCT) is a promising imaging technique to substitute or at least complement x-ray CT for more accurate proton therapy treatment planning as it allows calculating directly proton relative stopping power from proton energy loss measurements. A proton CT scanner with a silicon-based particle tracking system and a five-stage scintillating energy detector has been completed. In parallel a modular software platform was developed to characterize the performance of the proposed pCT.

View Article and Find Full Text PDF

Purpose: To determine the dependence of the accuracy in reconstruction of relative stopping power (RSP) with proton computerized tomography (pCT) scans on the purity of the proton beam and the technological complexity of the pCT scanner using standard phantoms and a digital representation of a pediatric patient.

Methods: The Monte Carlo method was applied to simulate the pCT scanner, using both a pure proton beam (uniform 200 MeV mono-energetic, parallel beam) and the Northwestern Medicine Chicago Proton Center (NMCPC) clinical beam in uniform scanning mode. The accuracy of the simulation was validated with measurements performed at NMCPC including reconstructed RSP images obtained with a preclinical prototype pCT scanner.

View Article and Find Full Text PDF

Purpose: To evaluate the spatial resolution of proton CT using both a prototype proton CT scanner and Monte Carlo simulations.

Methods: A custom cylindrical edge phantom containing twelve tissue-equivalent inserts with four different compositions at varying radial displacements from the axis of rotation was developed for measuring the modulation transfer function (MTF) of a prototype proton CT scanner. Two scans of the phantom, centered on the axis of rotation, were obtained with a 200 MeV, low-intensity proton beam: one scan with steps of 4°, and one scan with the phantom continuously rotating.

View Article and Find Full Text PDF

We report on the operation and performance tests of a preclinical head scanner developed for proton computed tomography (pCT). After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. In order to assess the performance of the scanner, we have performed CT scans with 200 MeV protons from both the synchrotron of the Loma Linda University Medical Center (LLUMC) and the cyclotron of the Northwestern Medicine Chicago Proton Center (NMCPC).

View Article and Find Full Text PDF

Purpose: The primary objective of this work is to measure the secondary neutron field produced by an uncollimated proton pencil beam impinging on different tissue-equivalent phantom materials using organic scintillation detectors. Additionally, the Monte Carlo code mcnpx-PoliMi was used to simulate the detector response for comparison to the measured data. Comparison of the measured and simulated data will validate this approach for monitoring secondary neutron dose during proton therapy.

View Article and Find Full Text PDF

We report on the design, fabrication, and first tests of a tomographic scanner developed for proton computed tomography (pCT) of head-sized objects. After extensive preclinical testing, pCT is intended to be employed in support of proton therapy treatment planning and pre-treatment verification in patients undergoing particle-beam therapy. The scanner consists of two silicon-strip telescopes that track individual protons before and after the phantom, and a novel multistage scintillation detector that measures a combination of the residual energy and range of the proton, from which we derive the water equivalent path length (WEPL) of the protons in the scanned object.

View Article and Find Full Text PDF

Radiation therapy with protons and heavier ions is an attractive form of cancer treatment that could enhance local control and survival of cancers that are currently difficult to cure and lead to less side effects due to sparing of normal tissues. However, particle therapy faces a significant technical challenge because one cannot accurately predict the particle range in the patient using data provided by existing imaging technologies. Proton computed tomography (pCT) is an emerging imaging modality capable of improving the accuracy of range prediction.

View Article and Find Full Text PDF

Purpose: Proton computed tomography (pCT) will enable accurate prediction of proton and ion range in a patient while providing the benefit of lower radiation exposure than in x-ray CT. The accuracy of the range prediction is essential for treatment planning in proton or ion therapy and depends upon the detector used to evaluate the water-equivalent path length (WEPL) of a proton passing through the object. A novel approach is presented for an inexpensive WEPL detector for pCT and proton radiography.

View Article and Find Full Text PDF