Ultrason Sonochem
August 2022
Due to unique reaction conditions of the acoustic cavitation process, ultrasound-assisted synthesis of nanoparticles has attracted increased research attention. In this study, we demonstrate the effect of ultrasonic irradiation on the crystallinity, stability, biocompatibility, and magnetic properties of chitosan-coated superparamagnetic iron oxide nanoparticles (CS-SPIONs). CS solution and colloidal suspension of SPIONs were mixed and sonicated using an ultrasonic probe of 1.
View Article and Find Full Text PDFOptimization of sonochemical method of functionalizing a Silane coupling agent, Amino-Silane on Superparamagnetic Iron Oxide Nanoparticles (SPION) using Central Composite Design is reported. The Amino-Silane is grafted on the SPION in an iced bath environment using a Vibra-Cell 20 kHz ultrasonic irradiator with 13 mm diameter horn. Throughout the experiment amplitude of the ultrasonic device is maintained at 47%.
View Article and Find Full Text PDFZnO nanorods were directly grown on four different wires (silver, nickel, copper, and tungsten) using sonochemical method. Zinc nitrate hexahydrate and hexamethylenetetramine (HMT) were used as precursors. Influence of growth parameters such as precursors' concentration and ultrasonic power on the grown nanorods were determined.
View Article and Find Full Text PDFJ Photochem Photobiol B
September 2016
In this work we present influence of visible laser light on ATP level and viability of anaemic red blood cell (RBC). The visible laser lights used in this work are 460nm and 532nm. The responses of ATP level in anaemic and normal RBC before and after laser irradiation at different exposure time (30, 40, 50 and 60s) were observed.
View Article and Find Full Text PDFA non-seeded method of incorporating superparamagnetic iron oxide nanoparticles (SPION) into silica nanoparticles is presented. Mixture of both SPION and silica nanoparticles was ultrasonically irradiated. The collapsed bubbles and shockwave generated from the ultrasonic irradiation produce tremendous force that caused inelastic collision and incorporation of SPION into the silica.
View Article and Find Full Text PDFWe report a sonochemical method of functionalizing superparamagnetic iron oxide nanoparticles (SPION) with (3-aminopropyl)triethoxysilane (APTES). Mechanical stirring, localized hot spots and other unique conditions generated by an acoustic cavitation (sonochemical) process were found to induce a rapid silanization reaction between SPION and APTES. FTIR, XPS and XRD measurements were used to demonstrate the grafting of APTES on SPION.
View Article and Find Full Text PDF