Publications by authors named "Bashir Jarrar"

Nanoparticles (NPs) are utilized in various applications, posing potential risks to human health, tissues, cells, and macromolecules. This study aimed to investigate the ultrastructural alterations in hepatocytes and renal tubular cells induced by metallic and metal oxide NPs. Adult healthy male Wistar albino rats () were divided into 6 ( = 7) control and 6 treated groups ( = 7).

View Article and Find Full Text PDF

Perovskite solar cells display potential as a renewable energy source because of their high-power conversion efficiency. However, there is limited understanding regarding the potential impact of perovskite on human health and the ecosystem. In this study, two sets of male Wistar albino rats received 35 injections of perovskite composite at a dosage of 0.

View Article and Find Full Text PDF

Background: The entry of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cell is carried out by specific receptors and enzymes, including human angiotensin-converting enzyme 2 receptor (ACE2), transmembrane serine protease 2 (TMPRSS2), and cathepsin-L (CTSL). COVID-19 patients with comorbidities, such as diabetes mellitus (DM), are more prone to severe symptoms and have a higher risk of mortality.

Aims: The present study aimed to investigate the impact of controlled and uncontrolled type 1 DM (T1DM) on the gene expression of mouse Ace2, Tmprss2, and Ctsl and correlate it with the pathological alterations in the lungs and the heart of DM mice.

View Article and Find Full Text PDF

Copper oxide nanomaterials (CuO NPs) have been widely utilized in many fields, including antibacterial materials, anti-tumor, osteoporosis treatments, imaging, drug delivery, cosmetics, lubricants for metallic coating, the food industry, and electronics. Little is known about the potential risk to human health and ecosystems. The present work was conducted to investigate the ultrastructural changes induced by 20 ± 5 nm CuO NPs in hepatic tissues.

View Article and Find Full Text PDF

Background: Hydroxychloroquine (HCQ) toxicity can adversely affect vital organs, cause pathologic ocular damage, and can have direct cardiovascular effects. This study aims to identify the biochemical, hematological, and histological alterations of the vital organs associated with the effects of HCQ.

Methods: Male albino rats were exposed to the equivalent of HCQ therapeutic doses given to human patients being affected by malaria, lupus erythematosus, and COVID-19.

View Article and Find Full Text PDF

Gold nanoparticles (Au NPs) are used in diagnostic and therapeutic applications together with a variety of industrial purposes and in many biomedical sectors with potential risks to human health. The present study aimed to the histological, histochemical, and ultrastructural alterations induced by Au NPS in vital organs. Healthy male Wistar Albino rats () were subjected to 20 injections of 10-nm Au NPs at a daily dose of 2 mg/kg.

View Article and Find Full Text PDF

Copper oxide nanomaterials are used in many biomedical, agricultural, environmental, and industrial sectors with potential risk to human health and the environment. The present study was conducted to determine the renal ultrastructural damage caused by 25 nm CuO nanoparticles in renal tissues. Adult healthy male Wister Albino rats () were administered 35 intraperitoneal injections of CuO nanoparticles (2 mg/kg).

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiO NPs) have novel application and are used in many household application, nanomedicine, agriculture, industries and pharmaceutical products. These applications may be accompanied with potential risk in human health and the ecosystems. The current study was carried out to find out the acute damage that might be induced by TiO NPs in the heart and testis.

View Article and Find Full Text PDF

Silicon dioxide nanoparticles (SiO NPs) are widely invested in medicine, industry, agriculture, consuming products, optical imaging agents, cosmetics, and drug delivery. However, the toxicity of these NPs on human health and the ecosystem have not been extensively studied and little information is available about their behavioural toxicities. The current study aimed to find out the behavioural alterations that might be induced by chronic exposure to 10 nm SiO NPs.

View Article and Find Full Text PDF

Background: Atorvastatin (ATOR) is widely used for the treatment and prevention of hypercholesterolemia and various diseases, such as cardiovascular complications, with little data about the histopathological and ultrastructural renal alterations that might be induced by this drug.

Objectives: The present study was undertaken to investigate the potential toxicity of therapeutic doses of atorvastatin on the microanatomy and ultrastructure of renal tissues from Wistar albino rats.

Methods: Adult male Wistar albino rats received an oral daily dose of 5 mg/kg bodyweight for 90 consecutive days.

View Article and Find Full Text PDF

Silver nanoparticles (Ag NPs) are widely used in nanomedicine, pharmaceutical products, industry and other consumer products owing to their unique physiochemical properties with probable potential risk to human health and the ecosystems. The aim of this work was to investigate the in-life morphological effects, biochemical, histological and histochemical alterations that might be induced by variable sizes of Ag NPs in hepatic, renal and testicular tissues with the hypothesis that variable sizes of nano-Ag could induce variable effects in the vital organs. Five groups of adult healthy male mice (BALB/C) were exposed to 35 intraperitoneal injections of Ag NPs (1 mg/kg bw) using five different particle sizes (10, 20, 40, 60 and 100 nm).

View Article and Find Full Text PDF

Metallic nanoparticles (NPs) are widely used in medical preparations. The present study aims to find out the influence of widely used five metallic NPs on the expression of major hepatic drug-metabolizing enzyme (DME) genes. Six groups of BALB/C mice, 7 mice each, were exposed to: Gold NPs, silver NPs, copper oxide NPs, silicon dioxide NPs and zinc oxide NPs, for 21 days.

View Article and Find Full Text PDF

Although sertraline is widely prescribed as relatively safe antidepressant drug, hepatic toxicity was reported in some patients with sertraline treatment. The present study was conducted to investigate the morphometric, hepatotoxicity, and change in gene expression of drug metabolizing enzymes. Male healthy adult rabbits (Oryctolagus cuniculus) ranging from 1050 to 1100 g were exposed to oral daily doses of sertraline (0, 1, 2, 4, 8 mg/kg) for 9 weeks.

View Article and Find Full Text PDF

Background: Silicon dioxide (silica) nanoparticles (SDNPs) are widely used in nanotechnology and medicine, but these nanomaterials may carry a high risk for human health while little is known about their toxicity.

Methods: We investigated the alterations in morphometry, biochemistry, hematology, histology of liver tissue and gene expression of drug-metabolizing enzymes induced by 10-nm SDNPs. Healthy male Wistar albino rats were exposed to 20, 35 and 50 repeated injections of SDNPs (2 mg/kg body weight).

View Article and Find Full Text PDF

OBJECTIVE: To investigate the histomorphometric alterations induced in testicular tissues by variable sizes of silver nanoparticles (SNPs). STUDY DESIGN: Male mice (BALB/C) were treated with SNPs (1 mg/kg) using 5 different sizes (10, 20, 40, 60, and 100 nm) for 35 days. Testicular biopsies from all mice under study were examined histomorphologically.

View Article and Find Full Text PDF

Zinc oxide nanoparticles (ZnO NPs) are widely used in industry and cosmetic products with promising investment in medical diagnosis and treatment. However, these particles may reveal a high potential risk for human health with no information about hepatotoxicity that might be associated with their exposure. The present work was carried out to investigate the histological and histochemical alterations induced in the hepatic tissues by naked 35nm ZnO NPs.

View Article and Find Full Text PDF

Silver nanoparticles (SNPs) are widely used in nanomedicine and consuming products with potential risk to human health. While considerable work was carried out on the molecular, biochemical, and physiological alterations induced by these particles, little is known of the ultrastructural pathological alterations that might be induced by nanosilver materials. The aim of the present work is to investigate the hepatocyte ultrastructural alterations that might be induced by SNP exposure.

View Article and Find Full Text PDF

Sildenafil is used for the treatment of erectile dysfunction and is helping millions of men around the world to achieve and maintain a long lasting erection. Fifty healthy male rabbits (Oryctolagus cuniculus) were used in the present study and exposed daily to sildenafil (0, 1, 3, 6, 9 mg/kg) for 5 days per week for 7 weeks to investigate the biochemical changes and alterations in the hepatic tissues induced by this drug overdosing. In comparison with respective control rabbits, sildenafil overdoses elevated significantly (p-value<0.

View Article and Find Full Text PDF

Adult males of the Wistar albino rats (Rattus norvegicus) were exposed to lead acetate trihydrate in drinking water (0.0%, 0.25%, 0.

View Article and Find Full Text PDF

Background: Nanoparticles (NPs) can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. Since the properties of NPs differ from that of their bulk materials, they are being increasingly exploited for medical uses and other industrial applications.

View Article and Find Full Text PDF

Background: It is essential to understand the aetiopathogenesis of gallstone disease. This study was undertaken to determine the chemical composition of gallstones from patients living in Al-Jouf Province of Saudi Arabia.

Methods: This was a descriptive study where 46 gallstones from Al-Jouf Province of Saudi Arabia were analysed by semiquantitative titrimetric and colourimetric methods.

View Article and Find Full Text PDF

Background: Nanoparticles (NPs) can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. The aim of the present study was to investigate the particle-size, dose and exposure duration effects of gold nanoparticles (GNPs) on the hepatic tissue in an attempt to cover and understand the toxicity and their potential therapeutic and diagnostic use.

View Article and Find Full Text PDF

Background: Gold nanoparticles (GNPs) have important application for cell labeling and imaging, drug delivery, diagnostic and therapeutic purposes mainly in cancer. Nanoparticles (NPs) are being increasingly exploited for medical applications. The aim of the present study was to investigate the particle-size and period effects of administration of GNPs on the renal tissue in an attempt to address their potential toxicity.

View Article and Find Full Text PDF

Background: Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. Since the properties of nanoparticles (NPs) differ from that of their bulk materials, they are being increasingly exploited for medical uses and other industrial applications. The histological and the histochemical alterations in the renal tissues due to gold nanoparticles (GNPs) have not well documented and have not yet been identified.

View Article and Find Full Text PDF

Background: Advances in nanotechnology have identified promising candidates for many biological, biomedical and biomedicine applications. They are being increasingly exploited for medical uses and other industrial applications. The aim of the present study was to investigate the effects of administration of gold nanoparticles (GNPs) on inflammatory cells infiltration, central vein intima disruption, fatty change, and Kupffer cells hyperplasia in the hepatic tissue in an attempt to cover and understand the toxicity and the potential threat of their therapeutic and diagnostic use.

View Article and Find Full Text PDF