Presently, the rising concerns about the fossil fuel crisis and ecological deterioration have greatly affected the world economy and hence have attracted attention to the utilization of renewable energies. Among the renewable energy being developed, supercapacitors hold great promise in broad applications such as electric vehicles. Presently, the main challenge facing supercapacitors is the amount of energy stored.
View Article and Find Full Text PDFIn recent times, the growth of the Internet of Things (IoT), artificial intelligence (AI), and Blockchain technologies have quickly gained pace as a new study niche in numerous collegiate and industrial sectors, notably in the healthcare sector. Recent advancements in healthcare delivery have given many patients access to advanced personalized healthcare, which has improved their well-being. The subsequent phase in healthcare is to seamlessly consolidate these emerging technologies such as IoT-assisted wearable sensor devices, AI, and Blockchain collectively.
View Article and Find Full Text PDFMolecules
August 2022
In this study, a solution casting method was used to prepare solid polymer electrolytes (SPEs) based on a polymer blend comprising polyvinyl alcohol (PVA), cellulose acetate (CA), and potassium carbonate (KCO) as a conducting salt, and zinc oxide nanoparticles (ZnO-NPs) as a nanofiller. The prepared electrolytes were physicochemically and electrochemically characterized, and their semi-crystalline nature was established using XRD and FESEM. The addition of ZnO to the polymer-salt combination resulted in a substantial increase in ionic conductivity, which was investigated using impedance analysis.
View Article and Find Full Text PDFPolymers (Basel)
July 2022
In this research, innovative green and sustainable solid polymer electrolytes (SPEs) based on plasticized methylcellulose/polyvinyl pyrrolidone/potassium carbonate (MC/PVP/KCO) were examined. The MC/PVP/KCO SPE system with five distinct ethylene carbonate (EC) concentrations as a plasticizer was successfully designed. Frequency-dependent conductivity plots were used to investigate the conduction mechanism of the SPEs.
View Article and Find Full Text PDFSuccessful synthesis of ZnO-chitosan nanocomposites was conducted for the removal of methylene blue from an aqueous medium. Remarkable performance of the nanocomposites was demonstrated for the effective uptake of the dye, thereby achieving 83.77, 93.
View Article and Find Full Text PDFMembranes (Basel)
July 2022
In this research, nanocomposite solid polymer electrolytes (NCSPEs) comprising methylcellulose/pectin (MC/PC) blend as host polymer, ammonium chloride (NHCl) as an ion source, and zinc oxide nanoparticles (ZnO NPs) as nanofillers were synthesized via a solution cast methodology. Techniques such as Fourier transform infrared (FTIR), electrical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) were employed to characterize the electrolyte. FTIR confirmed that the polymers, NHCl salt, and ZnO nanofiller interact with one another appreciably.
View Article and Find Full Text PDFComposite polymer electrolyte (CPE) based on polyvinyl alcohol (PVA) polymer, potassium carbonate (KCO) salt, and silica (SiO) filler was investigated and optimized in this study for improved ionic conductivity and potential window for use in electrochemical devices. Various quantities of SiO in wt.% were incorporated into PVA-KCO complex to prepare the CPEs.
View Article and Find Full Text PDFThe optical constants of Para-Toluene sulfonic acid-doped polyaniline (PANI), PANIchitosan composites, PANI-reduced graphene-oxide composites and a ternary composite comprising of PANI, chitosan and reduced graphene-oxide dispersed in diluted p-toluene sulfonic acid (PTSA) solution and -Methyl-2-Pyrrolidone (NMP) solvent have been evaluated and compared. The optical constant values were extracted from the absorbance spectra of thin layers of the respective samples. The potential utilization of the materials as the active sensing materials of surface plasmon resonance biosensors has also been assessed in terms of the estimated value of the penetration depth through a dielectric medium.
View Article and Find Full Text PDFObjective: The main objective of this study is to isolate, identify, and quantify the active antimicrobial compounds present in the crude aqueous stem bark extract of using some common pathogenic microorganisms as well as toxicological profile.
Material And Methods: Crude aqueous stem bark extract of (CASEB) was partitioned by preparative thin layer chromatography (PTLC) using chloroform-methanol-water, 8:2:1 (v/v). The resulting bands were extracted using chloroform-methanol (50:50).
Background: The preterm microbiome is crucial to gut health and may contribute to necrotising enterocolitis (NEC), which represents the most significant pathology affecting preterm infants. From a cohort of 318 infants, <32 weeks gestation, we selected 7 infants who developed NEC (defined rigorously) and 28 matched controls. We performed detailed temporal bacterial (n = 641) and metabolomic (n = 75) profiling of the gut microbiome throughout the disease.
View Article and Find Full Text PDFResected gut tissue in necrotising enterocolitis (NEC) has a higher bacterial load than controls. Quantitative PCR was performed on longitudinal NEC and control stool samples (n=72). No significant difference in the total bacterial load was found between samples at diagnosis compared to controls or temporally within NEC.
View Article and Find Full Text PDFBackground: Probiotics are live microbial supplements that colonize the gut and potentially exert health benefit to the host.
Objectives: We aimed to determine the impact of a probiotic (Infloran®: Lactobacillus acidophilus-NCIMB701748 and Bifidobacterium bifidum-ATCC15696) on the bacterial and metabolic function of the preterm gut while in the neonatal intensive care unit (NICU) and following discharge.
Methods: Stool samples (n = 88) were collected before, during, and after probiotic intake from 7 patients, along with time-matched controls from 3 patients.