A method to synthesize stable, raspberry-like nanoparticles (NPs), using surface grafting of poly(glycidyl methacrylate) (PGMA) brushes on a polystyrene (PS) core with varying grafting densities, is reported. A two-step functionalization reaction of PGMA epoxide groups comprising an amination step first using ethylene diamine and then followed by a quaternization using glycidyltrimethylammonium chloride generates permanently and positively charged polyelectrolyte brushes, which result in both steric and electrostatic stabilization. The dispersion stability of the brush-bearing NPs is dramatically improved compared to that of the pristine PS core in salt solutions at ambient (25 °C) and elevated temperatures (60 °C).
View Article and Find Full Text PDFA targeted and controlled delivery of molecular surfactants at oil-water interfaces using the directed assembly of nanoparticles, NPs, is reported. The mechanism of NP assembly at the interface and the release of molecular surfactants is followed by laser scanning confocal microscopy and surface force spectroscopy. The assembly of positively charged polystyrene NPs at the oil-water interface was facilitated by the introduction of carboxylic acid groups in the oil phase (e.
View Article and Find Full Text PDFA stimuli-responsive, sub-100 nm nanoparticle (NP) platform with a hydrolyzable ester side chain for in situ generation of surfactants is demonstrated. The NPs were synthesized via copolymerization of vinyl-laurate and vinyl-acetate [-(VL--VA), 3:1 molar ratio] and stabilized with a protective poly(ethylene-glycol) shell. The NPs are ∼55 nm in diameter with a zeta potential of -54 mV.
View Article and Find Full Text PDF