The machining of ceramic materials is challenging and often impossible to realize with conventional machining tools. In various manufacturing applications, rotary ultrasonic milling (RUM) shows strengths, in particular for the development of high-quality micro-features in ceramic materials. The main variables that influence the performance and price of the product are surface roughness, edge chipping (EC), and material removal rate (MRR) during the processing of ceramics.
View Article and Find Full Text PDFMicromachining has gained considerable interest across a wide range of applications. It ensures the production of microfeatures such as microchannels, micropockets, etc. Typically, the manufacturing of microchannels in bioceramics is a demanding task.
View Article and Find Full Text PDFThis work focuses on developing a novel method to optimize the fabrication conditions of polyamide (PA) thin film composite (TFC) membranes using the multi-objective genetic algorithm II (MOGA-II) method. We used different fabrication conditions for formation of polyamide layer-trimesoyl chloride (TMC) concentration, reaction time (t), and curing temperature (Tc)-at different levels, and designed the experiment using the factorial design method. Three functions (polynomial, neural network, and radial basis) were used to generate the response surface model (RSM).
View Article and Find Full Text PDFFabrication of precise micro-features in bioceramic materials is still a challenging task. This is because of the inherent properties of bioceramics, such as low fracture toughness, high hardness, and brittleness. This paper places an emphasis on investigating the multi-objective optimization of fabrication of microchannels in alumina (Al₂O₃) bioceramics by using rotary ultrasonic machining (RUM).
View Article and Find Full Text PDF