Objective: Early detection of cardiovascular diseases is based on accurate quantification of the left ventricle (LV) function parameters. In this paper, we propose a fully automatic framework for LV volume and mass quantification from 2D-cine MR images already segmented using U-Net.
Methods: The general framework consists of three main steps: Data preparation including automatic LV localization using a convolution neural network (CNN) and application of morphological operations to exclude papillary muscles from the LV cavity.
In this paper, we propose an innovative approach to improve the performance of an Automatic Fingerprint Identification System (AFIS). The method is based on the design of a Possibilistic Fingerprint Quality Assessment (PFQA) filter where ground truths of fingerprint images of effective and ineffective quality are built by learning. The first approach, QS_I, is based on the AFIS decision for the image without considering its paired image to decide its effectiveness or ineffectiveness.
View Article and Find Full Text PDFIntroduction: The complexity of histopathological images remains a challenging issue in cancer diagnosis. A pathologist analyses immunohistochemical images to detect a colour-based stain, which is brown for positive nuclei with different intensities and blue for negative nuclei. Several issues emerge during the eyeballing tissue slide analysis, such as colour variations caused by stain inhomogeneity, non-uniform illumination, irregular cell shapes, and overlapping cell nuclei.
View Article and Find Full Text PDFComput Biol Med
November 2022
Background And Objective: Detection of the Optic Disc (OD) in retinal fundus image is crucial in identifying diverse abnormal conditions in the retina such as diabetic retinopathy. Previous systems are oriented to the OD detection and segmentation. Most research failed to locate the OD in the case when the image does not have a criterion appearance.
View Article and Find Full Text PDFIn this paper, we propose a new collaborative process that aims to detect macrocalcifications from mammographic images while minimizing false negative detections. This process is made up of three main phases: suspicious area detection, candidate object identification, and collaborative classification. The main concept is to operate on the entire image divided into homogenous regions called superpixels which are used to identify both suspicious areas and candidate objects.
View Article and Find Full Text PDFMicrocalcifications (MCs) are considered as the first indicator of breast cancer development. Their morphology, in terms of shape and size, is considered as the most important criterion that determines their malignity degrees. Therefore, the accurate delineation of MC is a cornerstone step in their automatic diagnosis process.
View Article and Find Full Text PDFUncertainty is at the heart of decision-making processes in most real-world applications. Uncertainty can be broadly categorized into two types: aleatory and epistemic. Aleatory uncertainty describes the variability in the physical system where sensors provide information (hard) of a probabilistic type.
View Article and Find Full Text PDFBackground And Objective: Accurate mass segmentation in mammographic images is a critical requirement for computer-aided diagnosis systems since it allows accurate feature extraction and thus improves classification precision.
Methods: In this paper, a novel automatic breast mass segmentation approach is presented. This approach consists of mainly three stages: contour initialization applied to a given region of interest; construction of fuzzy contours and estimation of fuzzy membership maps of different classes in the considered image; integration of these maps in the Chan-Vese model to get a fuzzy-energy based model that is used for final delineation of mass.
IEEE Trans Image Process
August 2016
This paper proposes an approach referred as: iterative refinement of possibility distributions by learning (IRPDL) for pixel-based image classification. The IRPDL approach is based on the use of possibilistic reasoning concepts exploiting expert knowledge sources as well as ground possibilistic seeds learning. The set of seeds is constructed by incrementally updating and refining the possibility distributions.
View Article and Find Full Text PDFVenous thrombosis (VT) volume assessment, by verifying its risk of progression when anticoagulant or thrombolytic therapies are prescribed, is often necessary to screen life-threatening complications. Commonly, VT volume estimation is done by manual delineation of few contours in the ultrasound (US) image sequence, assuming that the VT has a regular shape and constant radius, thus producing significant errors. This paper presents and evaluates a comprehensive functional approach based on the combination of robust anisotropic diffusion and deformable contours to calculate VT volume in a more accurate manner when applied to freehand 2-D US image sequences.
View Article and Find Full Text PDFIEEE Trans Inf Technol Biomed
December 2003
The purpose of this paper is to present an intelligent atlas of indexed endoscopic lesions that could be used in computer-assisted diagnosis as reference data. The development of such a system requires a mix of medical and engineering skills for analyzing and reproducing the cognitive processes that underlie the medical decision-making process. The analysis of both endoscopists experience and endoscopic terminologies developed by professional associations shows that diagnostic reasoning in digestive endoscopy uses a scene-object approach.
View Article and Find Full Text PDF