Methicillin-resistant (MRSA) is one of the most dreadful pathogens relevant in community and nosocomial-related infections around the world. Resensitising MRSA to antibiotics, once it became resistant, was a tough choice due to the high adaptability of this bacteria to savage conditions. This study aimed to create a chimeric enzybiotic against MRSA and test its efficiency, either individually or in combination with antibiotics.
View Article and Find Full Text PDFMultidrug-resistant bacterial infections are on the rise around the world. Chronic infections caused by these pathogens through biofilm mediation often complicate the situation. In natural settings, biofilms are often formed with different species of bacteria existing synergistically or antagonistically.
View Article and Find Full Text PDFThe emergence of antibiotic resistance in enterococci is a great concern encountered worldwide. Almost all enterococci exhibit significant levels of resistance to penicillin, ampicillin, semi-synthetic penicillin and most cephalosporins, primarily due to the expression of low-affinity penicillin-binding proteins. The development of new and novel antibacterial agents against enterococci is a significant need of the hour.
View Article and Find Full Text PDFDevelopment of multidrug antibiotic resistance in bacteria is a predicament encountered worldwide. Researchers are in a constant hunt to develop effective antimicrobial agents to counter these dreadful pathogenic bacteria. Here we describe a chimerically engineered multimodular enzybiotic to treat a clinical isolate of methicillin-resistant ().
View Article and Find Full Text PDF