Quantitative ultrasound is a non-invasive image modality that numerically characterizes tissues for medical diagnosis using acoustical parameters, such as the attenuation coefficient slope. A previous study introduced the total variation spectral log difference (TVSLD) method, which denoises spectral log ratios on a single-channel basis without inter-channel coupling. Therefore, this work proposes a multi-frequency joint framework by coupling information across frequency channels exploiting structural similarities among the spectral ratios to increase the quality of the attenuation images.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
August 2024
Ultrasound plane wave imaging is a cutting-edge technique that enables high frame-rate imaging. However, one challenge associated with high frame-rate ultrasound imaging is the high noise associated with them, hindering their wider adoption. Therefore, the development of a denoising method becomes imperative to augment the quality of plane wave images.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
July 2024
Current imaging techniques in echography rely on the pulse-echo (PE) paradigm which provides a straight-forward access to the in-depth structure of tissues. They inherently face two major challenges: the limitation of the pulse repetition frequency, directly linked to the imaging framerate, and, due to the emission scheme, their blindness to the phenomena that happen in the medium during the majority of the acquisition time. To overcome these limitations, we propose a new paradigm for ultrasound imaging, denoted by continuous emission ultrasound imaging (CEUI) [1], for a single input single output (SISO) device.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
August 2024
IEEE Trans Ultrason Ferroelectr Freq Control
January 2024
Ultrasound image simulation is a well-explored field with the main objective of generating realistic synthetic images, further used as ground truth for computational imaging algorithms or for radiologists' training. Several ultrasound simulators are already available, most of them consisting in similar steps: 1) generate a collection of tissue mimicking individual scatterers with random spatial positions and random amplitudes; 2) model the ultrasound probe and the emission and reception schemes; and 3) generate the radio frequency (RF) signals resulting from the interaction between the scatterers and the propagating ultrasound waves. This article is focused on the first step.
View Article and Find Full Text PDFPrevalence of liver disease is continuously increasing and nonalcoholic fatty liver disease (NAFLD) is the most common etiology. We present an approach to detect the progression of liver steatosis based on quantitative ultrasound (QUS) imaging. This study was performed on a group of 55 rats that were subjected to a control or methionine and choline deficient (MCD) diet known to induce NAFLD.
View Article and Find Full Text PDF. Ultrafast power Doppler (UPD) is an ultrasound method that can image blood flow at several thousands of frames per second. In particular, the high number of data provided by UPD enables the use of singular value decomposition (SVD) as a clutter filter for suppressing tissue signal.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2022
During the past few years, inverse problem formulations of ultrasound beamforming have attracted growing interest. They usually pose beamforming as a minimization problem of a fidelity term resulting from the measurement model plus a regularization term that enforces a certain class on the resulting image. Here, we take advantage of alternating direction method of multipliers to propose a flexible framework in which each term is optimized separately.
View Article and Find Full Text PDFIEEE Trans Med Imaging
November 2022
Recent advances in deep learning led to several algorithms for the accurate diagnosis of pneumonia from chest X-rays. However, these models require large training medical datasets, which are sparse, isolated, and generally private. Furthermore, these models in medical imaging are known to over-fit to a particular data domain source, i.
View Article and Find Full Text PDF(1) Background: Data suggest that patients with coronary chronic total occlusion (CTO) managed with percutaneous coronary intervention (PCI) could have better outcomes than those treated with optimal medical therapy alone. We aimed to systematically review dedicated scoring systems used to predict successful PCI in patients with CTO. (2) Methods: Electronic databases of MEDLINE (PubMed), Embase, and Cochrane were searched.
View Article and Find Full Text PDFPurpose: The proposed method aims to create label maps that can be used for the segmentation of animal brain MR images without the need of a brain template. This is achieved by performing a joint deconvolution and segmentation of the brain MR images.
Methods: It is based on modeling locally the image statistics using a generalized Gaussian distribution (GGD) and couples the deconvolved image and its corresponding labels map using the GGD-Potts model.
The aim of this study was to compare shaping abilities of Protaper Gold® (PTG) and 2Shape® (TS) by using a new automatic process and micro-computed tomography (Micro-CT). 32 first mandibular molars with two separate mesial canals were selected. Only mesial roots were prepared with PTG and TS.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2021
Ultrasound (US) image restoration from radio frequency (RF) signals is generally addressed by deconvolution techniques mitigating the effect of the system point spread function (PSF). Most of the existing methods estimate the tissue reflectivity function (TRF) from the so-called fundamental US images, based on an image model assuming the linear US wave propagation. However, several human tissues or tissues with contrast agents have a nonlinear behavior when interacting with US waves leading to harmonic images.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2021
This article addresses the problem of high-resolution Doppler blood flow estimation from an ultrafast sequence of ultrasound images. Formulating the separation of clutter and blood components as an inverse problem has been shown in the literature to be a good alternative to spatio-temporal singular value decomposition (SVD)-based clutter filtering. In particular, a deconvolution step has recently been embedded in such a problem to mitigate the influence of the point spread function (PSF) of the imaging system.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2020
In this article, we present a novel method for line artifacts quantification in lung ultrasound (LUS) images of COVID-19 patients. We formulate this as a nonconvex regularization problem involving a sparsity-enforcing, Cauchy-based penalty function, and the inverse Radon transform. We employ a simple local maxima detection technique in the Radon transform domain, associated with known clinical definitions of line artifacts.
View Article and Find Full Text PDFIEEE Trans Image Process
February 2020
This paper introduces a new fusion method for magnetic resonance (MR) and ultrasound (US) images, which aims at combining the advantages of each modality, i.e., good contrast and signal to noise ratio for the MR image and good spatial resolution for the US image.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Quantitative acoustic microscopy (QAM) permits the formation of quantitative two-dimensional (2D) maps of acoustic and mechanical properties of soft tissues at microscopic resolution. The 2D maps formed using our custom SAM systems employing a 250-MHz and a 500-MHz single-element transducer have a nominal resolution of 7 μm and 4μm, respectively. In a previous study, the potential of single-image super-resolution (SR) image post-processing to enhance the spatial resolution of 2D SAM maps was demonstrated using a forward model accounting for blur, decimation, and noise.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
The objective of this work is to apply 3D super resolution (SR) techniques to brain magnetic resonance (MR) image restoration. Two 3D SR methods are considered following different trends: one recently proposed tensor-based approach and one inverse problem algorithm based on total variation and low rank regularization. The evaluation of their effectiveness is assessed through the segmentation of brain compartments: gray matter, white matter and cerebrospinal fluid.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
November 2019
This paper proposes a novel framework to reconstruct dynamic magnetic resonance imaging (DMRI) with motion compensation (MC). Specifically, by combining the intensity-based optical flow constraint with the traditional compressed sensing scheme, we are able to jointly reconstruct the DMRI sequences and estimate the interframe motion vectors. Then, the DMRI reconstruction can be refined through MC with the estimated motion field.
View Article and Find Full Text PDFAvailable super-resolution techniques for 3-D images are either computationally inefficient prior-knowledge-based iterative techniques or deep learning methods which require a large database of known low-resolution and high-resolution image pairs. A recently introduced tensor-factorization-based approach offers a fast solution without the use of known image pairs or strict prior assumptions. In this paper, this factorization framework is investigated for single image resolution enhancement with an offline estimate of the system point spread function.
View Article and Find Full Text PDFIEEE Trans Med Imaging
March 2019
This paper introduces a robust 2-D cardiac motion estimation method. The problem is formulated as an energy minimization with an optical flow-based data fidelity term and two regularization terms imposing spatial smoothness and the sparsity of the motion field in an appropriate cardiac motion dictionary. Robustness to outliers, such as imaging artefacts and anatomical motion boundaries, is introduced using robust weighting functions for the data fidelity term as well as for the spatial and sparse regularizations.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2018
As members of an increasingly aging society, one of our major priorities is to develop tools to detect the earliest stage of age-related disorders such as Alzheimer's Disease (AD). The goal of this paper is to evaluate the possibility of using unobtrusively collected activity-aware smart home behavior data to detect the multimodal symptoms that are often found to be impaired in AD. After gathering longitudinal smart home data for 29 older adults over an average duration of 2 years, we automatically labeled the data with corresponding activity classes and extracted time-series statistics containing ten behavioral features.
View Article and Find Full Text PDFRoot canal segmentation on cone beam computed tomography (CBCT) images is difficult because of the noise level, resolution limitations, beam hardening and dental morphological variations. An image processing framework, based on an adaptive local threshold method, was evaluated on CBCT images acquired on extracted teeth. A comparison with high quality segmented endodontic images on micro computed tomography (µCT) images acquired from the same teeth was carried out using a dedicated registration process.
View Article and Find Full Text PDFThis paper introduces a new method for cardiac motion estimation in 2-D ultrasound images. The motion estimation problem is formulated as an energy minimization, whose data fidelity term is built using the assumption that the images are corrupted by multiplicative Rayleigh noise. In addition to a classical spatial smoothness constraint, the proposed method exploits the sparse properties of the cardiac motion to regularize the solution via an appropriate dictionary learning step.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2018
A novel framework for compressive sensing (CS) data acquisition and reconstruction in quantitative acoustic microscopy (QAM) is presented. Three different CS patterns, adapted to the specifics of QAM systems, were investigated as an alternative to the current raster-scanning approach. They consist of diagonal sampling, a row random, and a spiral scanning pattern and can all significantly reduce both the acquisition time and the amount of sampled data.
View Article and Find Full Text PDF