Publications by authors named "Basar Bilgicer"

Metastatic ovarian cancer (MOC) is highly deadly, due in part to the limited efficacy of standard-of-care chemotherapies to metastatic tumors and non-adherent cancer cells. Here, we demonstrated the effectiveness of a combination therapy of GRP78-targeted (TNP) and non-targeted (NP) nanoparticles to deliver a novel DM1-prodrug to MOC in a syngeneic mouse model. Cell surface-GRP78 is overexpressed in MOC, making GRP78 an optimal target for selective delivery of nanoparticles to MOC.

View Article and Find Full Text PDF

Here, rational engineering of doxorubicin prodrug loaded peptide-targeted liposomal nanoparticles to selectively target metastatic breast cancer cells is described. Glucose-regulated protein 78 (GRP78), a heat shock protein typically localized in the endoplasmic reticulum in healthy cells, has been identified to home to the cell surface in certain cancers, and thus has emerged as a promising therapeutic target. Recent reports indicated GRP78 to be expressed on the cell surface of an aggressive subpopulation of stem-like breast cancer cells that exhibit metastatic potential.

View Article and Find Full Text PDF

Peanut-induced allergy is an immunoglobulin E (IgE)-mediated type I hypersensitivity reaction that manifests symptoms ranging from local edema to life-threatening anaphylaxis. Although there are treatments for symptoms in patients with allergies resulting from allergen exposure, there are few preventive therapies other than strict dietary avoidance or oral immunotherapy, neither of which are successful in all patients. We have previously designed a covalent heterobivalent inhibitor (cHBI) that binds in an allergen-specific manner as a preventive for allergic reactions.

View Article and Find Full Text PDF

Here, we report a CD138 receptor targeting liposomal formulation (TNP[Prodrug-4]) that achieved efficacious tumor growth inhibition in treating multiple myeloma by overcoming the dose limiting severe toxicity issues of a highly potent drug, Mertansine (DM1). Despite the promising potential to treat various cancers, due to poor solubility and pharmacokinetic profile, DM1's translation to the clinic has been unsatisfactory. We hypothesized that the optimal prodrug chemistry would promote efficient loading of the prodrug into targeted nanoparticles and achieve controlled release following endocytosis by the cancer cells, consequently, accomplish the most potent tumor growth inhibition.

View Article and Find Full Text PDF

Although IL-9 has potent anti-tumor activity in adoptive cell transfer therapy, some models suggest that it can promote tumor growth. Here, we show that IL-9 signaling is associated with poor outcomes in patients with various forms of lung cancer, and is required for lung tumor growth in multiple mouse models. CD4 T cell-derived IL-9 promotes the expansion of both CD11c and CD11c interstitial macrophage populations in lung tumor models.

View Article and Find Full Text PDF

Background: Despite the high prevalence of allergic asthma, currently, avoidance of the responsible allergens, which is nearly impossible for allergens such as house dust mite (HDM), remains among the most effective treatment. Consequently, determination of the immunogenic epitopes of allergens will aid in developing a better understanding of the condition for diagnostic and therapeutic purposes. Current methods of epitope identification, however, only evaluate immunoglobulin E-epitope binding interactions, which is not directly related to epitope immunogenicity.

View Article and Find Full Text PDF

Development of effective targeted nanoparticle (TNP) therapeutics requires rational design of targeted and endosomolytic moieties. Nevertheless, endosomal escape of TNPs is poorly understood, relying on extrapolation of knowledge from nontargeted (NP) systems. Here, we describe how incorporation of targeting elements on endosomolytic nanoparticles alters the endosomal escape mechanism.

View Article and Find Full Text PDF

Endosomal escape of nanoparticles (NPs) is a weighty consideration for engineering successful nanomedicines. Although it is well-established that incorporation of histidine (His) in particle design improves endosomal escape for NPs, our understanding of its effects for ligand-targeted nanoparticles (TNPs) remains incomplete. Here, we systematically evaluated the cooperativity between targeting ligands and endosomolytic elements using liposomal TNPs with precise stoichiometric control over functional moieties (>90% loading efficiency).

View Article and Find Full Text PDF

Background: Drug-loaded nanoparticles have established their benefits in the fight against multiple myeloma; however, ligand-targeted nanomedicine has yet to successfully translate to the clinic due to insufficient efficacies reported in preclinical studies.

Methods: In this study, liposomal nanoparticles targeting multiple myeloma via CD38 or CD138 receptors are prepared from pre-synthesized, purified constituents to ensure increased consistency over standard synthetic methods. These nanoparticles are then tested both in vitro for uptake to cancer cells and in vivo for accumulation at the tumor site and uptake to tumor cells.

View Article and Find Full Text PDF

B cell malignancies, such as B cell leukemia and lymphoma, have CD22 overexpression with ∼7% of patients. A short CD22 binding peptide (PV3) with a moderate affinity (Kd ∼ 9 μM) was identified by screening multiple peptide candidates determined through analysis of CD22-epratuzumab complex crystal structure. PV3 binding specificity was confirmed via competitive binding inhibition, then was used as the targeting moiety on CD22-targeted liposomal nanoparticle (TNPPV3) formulations.

View Article and Find Full Text PDF

Here, we report rationally engineered peptide-targeted liposomal doxorubicin nanoparticles that have an enhanced selectivity for HER2-positive breast tumor cells with high purity, reproducibility, and precision in controlling stoichiometry of targeting peptides. To increase HER2-positive tumor cell selective drug delivery, we optimized the two most important design parameters, peptide density and linker length, via systematic evaluations of their effects on both in vitro cellular uptake and in vivo tumor accumulation and cellular uptake. The optimally designed nanoparticles were finally evaluated for their tumor inhibition efficacy using in vivo MMTV-neu transplantation mouse model.

View Article and Find Full Text PDF

Cephalosporins are commonly used antibiotics both in hospitalized patients and in outpatients. Hypersensitivity reactions to cephalosporins are becoming increasingly common with a wide range of immunopathologic mechanisms. Cephalosporins are one of the leading causes for perioperative anaphylaxis and severe cutaneous adverse reactions.

View Article and Find Full Text PDF

Despite ligand-targeted liposomes long garnering interest as drug delivery vehicles for cancer therapeutics, inconsistency in successful outcomes have hindered their translation into the clinic. This is in part due to discrepancies between in vitro design evaluations and final in vivo outcomes. By employing a multifaceted synthetic strategy to prepare peptide-targeted nanoparticles of high purity, reproducibility, and with precisely controlled quantity of functionalities, we systematically evaluated the individual roles that peptide-linker length, peptide hydrophilicity, peptide density, and nanoparticle size play on cancer cell uptake and tumor targeting both in vitro and in vivo, and how the results correlated and contrasted.

View Article and Find Full Text PDF

Drug allergies occur when hapten-like drug metabolites conjugated to serum proteins, through their interactions with specific IgE, trigger allergic reactions that can be life threatening. A molecule termed covalent heterobivalent inhibitor (cHBI) was designed to specifically target drug hapten-specific IgE to prevent it from binding drug-haptenated serum proteins. cHBI binds the two independent sites on a drug hapten-specific Ab and covalently conjugates only to the specific IgE, permanently inhibiting it.

View Article and Find Full Text PDF

Allergies are a result of allergen proteins cross-linking allergen-specific IgE (sIgE) on the surface of mast cells and basophils. The diversity and complexity of allergen epitopes, and high-affinity of the sIgE-allergen interaction have impaired the development of allergen-specific inhibitors of allergic responses. This study presents a design of food allergen-specific sIgE inhibitors named covalent heterobivalent inhibitors (cHBIs) that selectively form covalent bonds to only sIgEs, thereby permanently inhibiting them.

View Article and Find Full Text PDF

As our ability to synthesize and modify nanoobjects has improved, efforts to explore nanotechnology for diagnostic purposes have gained momentum. The variety of nanoobjects, especially those with polyvalent properties, displays a wide range of practical and unique properties well suited for applications in various diagnostics. This review briefly covers the broad scope of multivalent nanoobjects and their use in diagnostics, ranging from ex vivo assays and biosensors to in vivo imaging.

View Article and Find Full Text PDF

Targeted liposomal nanoparticles are commonly used drug delivery vehicles for targeting cancer cells that overexpress a particular cell surface receptor. However, typical target receptors are also expressed at variable levels in healthy tissue, leading to non-selective targeting and systemic toxicity. Here, we demonstrated that the selectivity of peptide-targeted liposomes for their target cells can be significantly enhanced by employing a dual-receptor targeted approach to simultaneously target multiple tumor cell surface receptors.

View Article and Find Full Text PDF

In this study, we validated a novel nanoparticle based diagnostic technique for drug allergies to two common platinum-based chemotherapeutics, oxaliplatin and carboplatin.

View Article and Find Full Text PDF

Recently, immunotherapy has emerged as a potential, possibly safer, alternative to more traditional chemotherapeutic treatments. Nevertheless, combating the tumor microenvironment (TME) and reactivating the immune system is not without complications. A recent report suggests a rationally designed supramolecular assembly to offer a solution to this problem.

View Article and Find Full Text PDF

Current methods for detection and diagnosis of allergies do not provide epitope specific immunogenic information and hence lack critical information that could aid in the prediction of clinical responses. To address this issue, we developed a nanoparticle based platform, called nanoallergens that enable multivalent display of potential allergy epitopes for determining the immunogenicity of each IgE binding epitope. By synthesizing nanoallergens that present various epitopes from the major peanut allergen, Ara h2, we directly determined the immunogenicity of each epitope, alone and in combination with other epitopes, using patient sera.

View Article and Find Full Text PDF

Small dimensions of gold nanoparticles (AuNPs) necessitate antibodies to be immobilized in an oriented fashion in order to conserve their antigen binding activity for proper function. In this study, we used the previously described UV-NBS method to site-specifically incorporate a thioctic acid (TA) functionality into antibodies at the conserved nucleotide-binding site (NBS). Modified antibodies were immobilized on the AuNP surface in an oriented manner utilizing the newly incorporated TA functionality while maintaining the antibody structure and activity.

View Article and Find Full Text PDF

Here, we present an affinity membrane chromatography technique for purification of monoclonal and polyclonal antibodies from cell culture media of hybridomas and ascites fluids. The m-NBST method utilizes the nucleotide-binding site (NBS) that is located on the Fab variable domain of immunoglobulins to enable capturing of antibody molecules on a membrane affinity column via a small molecule, tryptamine, which has a moderate binding affinity to the NBS. Regenerated cellulose membrane was selected as a matrix due to multiple advantages over traditionally used resin-based affinity systems.

View Article and Find Full Text PDF

Here, we report the synthesis and evaluation of dual drug-loaded nanoparticles as an effective means to deliver carfilzomib and doxorubicin to multiple myeloma tumor cells at their optimal synergistic ratio. First, various molar ratios of carfilzomib to doxorubicin were screened against multiple myeloma cell lines to determine the molar ratio that elicited the greatest synergy using the Chou-Talalay method. The therapeutic agents were then incorporated into liposomes at the optimal synergistic ratio of 1:1 to yield dual drug-loaded nanoparticles with a narrow size range of 115 nm and high reproducibility.

View Article and Find Full Text PDF