Publications by authors named "Basanta Bista"

Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce.

View Article and Find Full Text PDF

Painted turtles are remarkable for their freeze tolerance and supercooling ability along with their associated resilience to hypoxia/anoxia and oxidative stress, rendering them an ideal biomedical model for hypoxia-induced injuries (including strokes), tissue cooling during surgeries, and organ cryopreservation. Yet, such research is hindered by their seasonal reproduction and slow maturation. Here we developed and characterized adult stem cell-derived turtle liver organoids (3D self-assembled in vitro structures) from painted, snapping, and spiny softshell turtles spanning ~175My of evolution, with a subset cryopreserved.

View Article and Find Full Text PDF

Sex chromosome dosage compensation (SCDC) overcomes gene-dose imbalances that disturb transcriptional networks, as when ZW females or XY males are hemizygous for Z/X genes. Mounting data from non-model organisms reveal diverse SCDC mechanisms, yet their evolution remains obscure, because most informative lineages with variable sex chromosomes are unstudied. Here, we discovered SCDC in turtles and an unprecedented thermosensitive SCDC in eukaryotes.

View Article and Find Full Text PDF

Recent sequencing and software enhancements have advanced our understanding of the evolution of genomic structure and function, especially addressing novel evolutionary biology questions. Yet fragmentary turtle genome assemblies remain a challenge to fully decipher the genetic architecture of adaptive evolution. Here, we use optical mapping to improve the contiguity of the painted turtle () genome assembly and use fluorescent in situ hybridization (FISH) of bacterial artificial chromosome (BAC) clones, BAC-FISH, to physically map the genomes of the painted and slider turtles ().

View Article and Find Full Text PDF

Sex chromosome evolution remains an evolutionary puzzle despite its importance in understanding sexual development and genome evolution. The seemingly random distribution of sex-determining systems in reptiles offers a unique opportunity to study sex chromosome evolution not afforded by mammals or birds. These reptilian systems derive from multiple transitions in sex determination, some independent, some convergent, that lead to the birth and death of sex chromosomes in various lineages.

View Article and Find Full Text PDF

The evolutionary lability of sex-determining mechanisms across the tree of life is well recognized, yet the extent of molecular changes that accompany these repeated transitions remain obscure. Most turtles retain the ancestral temperature-dependent sex determination (TSD) from which multiple transitions to genotypic sex determination (GSD) occurred independently, and two contrasting hypotheses posit the existence or absence of reversals back to TSD. Here we examined the molecular evolution of the coding regions of a set of gene regulators involved in gonadal development in turtles and several other vertebrates.

View Article and Find Full Text PDF