Publications by authors named "Basant Lal"

Water pollution from the industrial dyes is a serious hazard to ecosystems, and addressing this issue is a significant challenge. To address these issues, we are fabricated BaDyFeO (x = 0.02 to 0.

View Article and Find Full Text PDF

Cellulose-based hydrogels are versatile and biodegradable materials derived from renewable cellulose sources. These hydrogels possess unique properties, such as high water absorption capacity, tunable mechanical strength and excellent biocompatibility. Their porous structure and functional groups enable effective interactions with contaminants and making them ideal candidates for water purification.

View Article and Find Full Text PDF

Throughout the recent years, water bodies have been significantly contaminated via various industrial and pollution wastes posing threats to the living. To tackle the situation, Lignin-Based Hydrogels have appeared as a material with great potential for wastewater treatment. Biomass-derived polymers for wastewater treatment present a sustainable replacement to plastics based on petroleum owing to its biocompatibility, affordability, eco-friendliness and biodegradability.

View Article and Find Full Text PDF

In our study, we have tried to enhance the biological qualities of nickel oxide nanoparticles and nanocomposites which were prepared using the extract of Aegle marmelos tree leaves and chitosan biopolymer. For in-depth study of the fabricated samples, numerous physiochemical approaches were utilized. The analysis used consists of field emission scanning electron microscopy with energy dispersive X-ray analysis and photoluminescence, X-ray diffraction, UV-visible spectroscopy, and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

The widespread discharge of organic dyes into the wastewater from various industrial processes has develop a major environmental apprehension in the modern world. To tackle such environmental issues, we are synthesizing a novel catalyst of composition, BaCoDyFeO (x = y = 0.02-0.

View Article and Find Full Text PDF

Keeping recruitment of green and cost-effective solutions for environmental challenges in view, the current work was designed to solve the problems related to metal corrosion in the aqueous phases of crude oil in chemical industries. Green materials can play an important role in protecting metals from this corrosion. Hence, the green anti-corrosion material based upon gossypol derivate is suggested to solve the above problems.

View Article and Find Full Text PDF
Article Synopsis
  • The study developed a cost-effective and eco-friendly nanohybrid material using rice straw extract to synthesize a combination of iron (Fe) and molybdenum disulfide (MoS).
  • X-ray diffraction confirmed the formation of a specific structure within the material, primarily consisting of Fe(MoO), and various analytical techniques were used to characterize its properties, revealing a heterogeneous particle size distribution and moderate stability.
  • The resulting material showed promising photoluminescent properties, indicating its potential for biomedical applications.
View Article and Find Full Text PDF
Article Synopsis
  • The increasing use of plastic products has led to a serious problem with non-degradable waste plastic, necessitating innovative technological solutions for waste management.
  • This review highlights progress in converting waste plastic into valuable nanomaterials, assessing current methods, their limitations, and presenting state-of-the-art techniques for this transformation.
  • It emphasizes the potential applications of these nanomaterials in various fields, including environmental protection and energy, while discussing challenges for their commercial production and integration into a circular economy.
View Article and Find Full Text PDF

Lead is used in many industries such as refining, mining, battery manufacturing, smelting. Releases of lead from these industries is one of the major public health concerns due to widespread persistence in the environment and its resulting poisoning character. In this work, the castor seed shell (CSS) waste was exploited for preparing a beneficial bio-adsorbent for removal of Pb(II) ions from water.

View Article and Find Full Text PDF

In our era, water pollution not only poses a serious threat to human, animal, and biotic life but also causes serious damage to infrastructure and the ecosystem. A set of physical, chemical, and biological technologies have been exploited to decontaminate and/or disinfect water pollutants, toxins, microbes, and contaminants, but none of these could be ranked as sustainable and scalable wastewater technology. The photocatalytic process can harmonize the sunlight to degrade certain toxins, chemicals, microbes, and antibiotics, present in water.

View Article and Find Full Text PDF

Solid waste generation is a huge contributor to environmental pollution issues, and food wastes are prominent in this category due to their large generation on a day-to-day basis. Thus, the settlement of daily food waste is one of the major constraints and needs innovative manufacturing sheme to valorize solid waste in sustainable manner. Moreover, these food wastes are rich in organic content, which has promising scope for their value-added products.

View Article and Find Full Text PDF

Cancer is a major public health concern because it is one of the main causes of morbidity and mortality worldwide. As a result, numerous studies have reported the development of new therapeutic compounds with the aim of selectively treating cancer while having little negative influence on healthy cells. In this context, earthworm coelomic fluid has been acknowledged as a rich source of several bioactive substances that may exhibit promising anticancer activity.

View Article and Find Full Text PDF

The economic production of cellulase enzymes for various industrial applications is one of the major research areas. A number of broad industrial applications, for example, in cellulosic biomass hydrolysis for simple sugars such as glucose and subsequent biofuel production, make these enzyme systems the third most demanding enzymes. Nevertheless, due to their production on commercial substrates, cellulases fall into the category of costly enzymes.

View Article and Find Full Text PDF

Banana peel waste is one of the major contributors in the issue raised from solid waste, however, it can be valorized effectively due to high content of cellulose and hemicellulose. Significant conversion of banana waste includes cellulolytic enzymes and bioenergy production. In the present study, bacterial cellulase was produced using raw banana peel and ripe banana peel under SSF.

View Article and Find Full Text PDF
Article Synopsis
  • - This study focuses on creating a carbon-based nanocatalyst (CNCs) from Kans grass biomass to improve the production of microbial cellulase, which helps in breaking down biomass for sugar production.
  • - Various pretreatments were applied to the Kans grass, including physical processes and chemical treatments with KOH, to effectively produce CNCs and enhance the efficiency of sugar extraction.
  • - Results showed that using CNCs improved cellulase production significantly, with optimal conditions identified for temperature and enzyme stability, leading to the generation of a substantial amount of sugar from the engineered process.
View Article and Find Full Text PDF

Solid wastes are the major contributors in global environmental pollution and their management is the need of urgency towards development of sustainable world. In the present work, solid waste of potato peels has been used as feedstock for fermentation of bacterial cellulase production and substrate for enzymatic hydrolysis via this enzymes cocktail. Additionally, liquid extracts of pea pod and root of water hyacinth wastes have been used to complete nutritional requirements and moisture balance in SSF process during the course of enzyme production.

View Article and Find Full Text PDF

Carbon nanotubes were used to immobilize Chrysosporium fungus for building an adequate adsorbent to be used as an desirable sorbent for preconcentration and measurement of cadmium ultra-trace levels in various samples. After characterization, the potential of Chrysosporium/carbon nanotubes for the sorption of Cd(II) ions was scrutinized by the aid of central composite design, and comprehensive studies of sorption equilibrium, kinetics and thermodynamic aspects were accomplished. Then, the composite was utilized for preconcentration of ultra-trace cadmium levels, by a mini-column packed with Chrysosporium/carbon nanotubes, before its determination with ICP-OES.

View Article and Find Full Text PDF

Solid waste management and waste valorization are key concerns and challenges around the globe. Solid wastes generated by food industries are found in a diverse variety, are key sources of enormously valuable compounds, and can be effectively transformed into useful products for broad industrial applications. Biomass-based catalysts, industrial enzymes, and biofuels are some of the very prominent and sustainable products that are developed using these solid wastes.

View Article and Find Full Text PDF

Keeping the high potential of some microorganisms in adsorption of radionuclides in view, the adsorption properties of Enterobacter cloacae towards uranium were attentively scrutinized, and then it was used for preconcentration of uranium in different samples, using Enterobacter cloacae/carbon nanotube composite. First, using ultrasonic agitation, the effects of operational factors on biosorption of uranium on the inactive Enterobacter cloacae were appraised and modeled by central composite design, and a comprehensive study was performed on the equilibrium, kinetics, thermodynamic, and selectivity aspects of biosorption. The optimization studies along with the evaluations of the adsorption properties revealed that Enterobacter cloacae have a high affinity for fast and selective biosorption of uranium ions, at pH 5.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3k0ibc63o9b83bius58hngiv8f7c2p58): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once