Alcohol consumption is mediated by several important neuromodulatory systems, including the endocannabinoid and neuropeptide Y (NPY) systems in the limbic brain circuitry. However, molecular mechanisms through which cannabinoid-1 (CB1) receptors regulate alcohol consumption are still unclear. Here, we investigated the role of the CB1 receptor-mediated downstream regulation of NPY via epigenetic mechanisms in the amygdala.
View Article and Find Full Text PDFBackground: While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors.
Methodology/principal Findings: The role of the endocannabinoid (eCB) system in depressive behavior was examined in Wistar Kyoto (WKY) rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS) rats.
Birth Defects Res B Dev Reprod Toxicol
April 2012
In utero exposure to tetrahydrocannabinol, the psychoactive component of marijuana, is associated with an increased risk for neurodevelopmental defects in the offspring by interfering with the functioning of the endocannabinoid (eCB) system. At the present time, it is not clearly known whether the eCB system is present before neurogenesis. Using an array of biochemical techniques, we analyzed the levels of CB1 receptors, eCBs (AEA and 2-AG), and the enzymes (NAPE-PLD, DAGLα, DAGLβ, MAGL, and FAAH) involved in the metabolism of the eCBs in chick and mouse models during development.
View Article and Find Full Text PDFThe present study was undertaken to examine whether genetically predetermined differences in components of the endocannabinoid system were present in the brain of Sardinian alcohol-preferring (sP) and Sardinian alcohol-non-preferring (sNP) rats, a pair of rat lines selectively bred for opposite alcohol preference. The effects of acquisition and maintenance of alcohol drinking, alcohol withdrawal, and alcohol re-exposure on the endocannabinoid system was also assessed in the striatum of sP rats. The findings revealed significantly higher density of the CB1 receptors and levels of CB1 receptor mRNA, CB1 receptor-mediated G-protein coupling, and endocannabinoids in the cerebral cortex, hippocampus and striatum of alcohol-naive sP rats than sNP rats.
View Article and Find Full Text PDFRecent studies have indicated a role for the endocannabinoid system in ethanol-related behaviors. This study examined the effect of pharmacological activation, blockade, and genetic deletion of the CB(1) receptors on ethanol-drinking behavior in ethanol preferring C57BL/6J (B6) and ethanol nonpreferring DBA/2J (D2) mice. The deletion of CB(1) receptor significantly reduced the ethanol preference.
View Article and Find Full Text PDFThe aim of this study was to examine the role of fatty acid amide hydrolase (FAAH) on ethanol sensitivity, preference, and dependence. The deletion of FAAH gene or the inhibition of FAAH by carbamoyl-biphenyl-3-yl-cyclohexylcarbamate (URB597) (0.1 mg/kg) markedly increased the preference for ethanol.
View Article and Find Full Text PDF1. This study investigated whether (a) cannabinoid CB(1) receptor knockout (CB(1)(-/-)) mice displayed altered gastrointestinal transit and (b) cannabinoid CB(1) and opioid receptors functionally interact in the regulation of gastrointestinal transit. 2.
View Article and Find Full Text PDFThe present study investigated the effect of ethanol (EtOH) exposure and its withdrawal on the central endocannabinoid system utilizing an EtOH vapor inhalation model, which is known to produce functional tolerance and dependence to EtOH. Swiss Webster mice (n=24) were exposed to EtOH vapors for 72h. Mice were sacrificed after 72h following EtOH exposure (n=12) and 24h after its withdrawal (n=12).
View Article and Find Full Text PDFExpert Opin Ther Targets
April 2006
G-protein-coupled receptor (GPCR)-mediated signalling is the most widely used signalling mechanism in cells, and its regulation is important for various physiological functions. The cannabinoid-1 (CB(1)) receptor, a GPCR, has been shown to play a critical role in neural circuitries mediating motivation, mood and emotional behaviours. Several recent studies have indicated that impairment of CB(1) receptor-mediated signalling may play a critical role in the pathophysiology of various neuropsychiatric disorders.
View Article and Find Full Text PDFPrevious studies have shown that mice lacking cannabinoid (CB1) receptor gene consume markedly reduced levels of ethanol. Mice lacking the enzyme fatty acid amidohydrolase (FAAH) are severely impaired in their ability to degrade anandamide (AEA) and therefore represent a unique animal model in which to examine the function of AEA in vivo on ethanol-drinking behavior. In the current study, FAAH(-/-) mice were tested for ethanol, saccharin or quinine consumption and preference.
View Article and Find Full Text PDFAims: The current study investigated the efficacy of CB1 receptor-targeted drugs on the development and expression of tolerance to alcohol (EtOH).
Methods: An EtOH-inhalation model was used to induce tolerance, as measured by EtOH-induced sedation and hypothermia after a 24 h withdrawal period. Two drug treatment procedures, (i) co-treatment with EtOH and (ii) acute drug administration following chronic EtOH treatment, were used to test the efficacy of CB1 receptor manipulations on EtOH tolerance.
Several natural lipids have emerged as candidate modulators of central nervous system (CNS) functions. Fatty acid amides and their coupled signaling pathways are known to regulate several physiological and behavioral processes. Recent studies from our laboratory and others also have implicated endogenous marijuana-like brain constituents, endocannabinoids (ECs), and cannabinoid-1 (CB1) receptors in the neural circuitry that mediate drug addiction and neuropsychiatric disorders.
View Article and Find Full Text PDFN-acetylaspartylglutamate (NAAG), a dipeptide derivative of N-acetylaspartate (NAA) and glutamate (Glu), is present in neurons. Upon neurostimulation, NAAG is exported to astrocytes where it activates a specific metabotropic Glu surface receptor (mGluR3), and is then hydrolyzed by an astrocyte-specific enzyme, NAAG peptidase, liberating Glu, which can then be taken up by the astrocyte. NAAG is a selective mGluR3 agonist, one of several mGluRs that, when activated, triggers Ca2+ waves that spread to astrocytic endfeet in contact with the vascular system, where a secondary release of vasoactive agents induces a focal hyperemic response providing increased oxygen and nutrient availability to the stimulated neurons.
View Article and Find Full Text PDFThe present review evaluates the evidence that the endocannabinoid system plays in the development of tolerance to alcohol. The identification of a G-protein-coupled receptor, namely, the cannabinoid receptor (CB(1) receptor), which was activated by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major psychoactive component of marijuana, led to the discovery of endogenous cannabinoid agonists. Until now, four fatty acid derivatives identified to be arachidonylethanolamide (AEA), 2-arachidonylglycerol (2-AG), 2-arachidonylglycerol ether (noladin ether) and virodhamine have been isolated from both nervous and peripheral tissues.
View Article and Find Full Text PDFThis review presents the remarkable research during the past several years indicating that some of the pharmacological and behavioral effects of alcohol, including alcohol drinking and alcohol-preferring behavior, are mediated through one of the most abundant neurochemical systems in the central nervous system, the endocannabinoid signaling system. The advances, with the discovery of specific receptors and the existence of naturally occurring cannabis-like substances in the mammalian system and brain, have helped in understanding the neurobiological basis for drugs of abuse, including alcoholism. The cDNA and genomic sequences encoding G-protein-coupled cannabinoid receptors (CB1 and CB2) from several species have now been cloned.
View Article and Find Full Text PDFAberrant phosphorylation of the neuronal cytoskeleton is an early pathological event in Alzheimer's disease (AD), but the underlying mechanisms are unclear. Here, we demonstrate in the brains of AD patients that neurofilament hyperphosphorylation in neocortical pyramidal neurons is accompanied by activation of both Erk1,2 and calpain. Using immunochemistry, Western blot analysis, and kinase activity measurements, we show in primary hippocampal and cerebellar granule (CG) neurons that calcium influx activates calpain and Erk1,2 and increases neurofilament phosphorylation on carboxy terminal polypeptide sites known to be modulated by Erk1,2 and to be altered in AD.
View Article and Find Full Text PDFEthanol increases extracellular anandamide levels in neuronal cells. However, the molecular mechanisms by which this occurs are unknown. Chronic exposure of cerebellar granule neurons to ethanol increased the levels of anandamide accumulated in the cellular medium.
View Article and Find Full Text PDFThe mechanisms underlying predisposition to alcohol abuse and alcoholism are poorly understood. In this study, we evaluated the role of cannabinoid (CB1) receptors in (i) voluntary alcohol consumption, and (ii) acute alcohol-induced dopamine (DA) release in the nucleus accumbens, using mice that lack the CB1 receptor gene (CB1-/-). CB1-/- mice exhibited dramatically reduced voluntary alcohol consumption, and completely lacked alcohol-induced DA release in the nucleus accumbens, as compared to wild-type mice.
View Article and Find Full Text PDFCanavan disease (CD) is a human early-onset leukodystrophy, genetic in nature and resulting from an autosomally inherited recessive trait. CD is characterized by loss of the axon's myelin sheath, while leaving the axons intact, and spongiform degeneration, especially in white matter. It is an osmotic disease that affects both gray and white matter and is caused by the inability of oligodendrocytes to hydrolyze N-acetyl-L-aspartate (NAA) because of a lack of aspartoacylase activity.
View Article and Find Full Text PDFThis article represents the proceedings of a symposium at the 2001 annual meeting of the Research Society on Alcoholism in Montreal, Canada. The chairpersons were Appa Hungund and George Koob. The presentations were (1) Role of endocannabinoids in ethanol tolerance, by Appa Hungund; (2) Modulation of cannabinoid receptor and its signal transduction in chronic alcoholism, by B.
View Article and Find Full Text PDF