Publications by authors named "Basak Varol"

Objective: Diphtheria toxin (DTx) is a well-characterized bacterial toxin. However, the endocytic pathway of the mutant of DTx, CRM197, which is used as an immunological adjuvant, has not yet been fully explained. The aim of this study was to investigate the intracellular trafficking of CRM197-loaded endosomes.

View Article and Find Full Text PDF

CRM197, cross-reacting material 197, is a mutant of diphtheria toxin (DTx). CRM197 is used in pharmacology as a carrier protein. It has been recently shown that CRM197 causes breakdown in actin filaments.

View Article and Find Full Text PDF

Eukaryotic elongation factor 2 (eEF2) plays an important role in eukaryotic polypeptide chain elongation. Adenosine diphosphate (ADP)-ribosylation is a post-translational modification reaction that catalyzes the transfer of ADP-ribose group to eEF2 and this causes the inhibition of protein synthesis. Indeed, in the absence of diptheria toxin, endogenous ADP-ribosylation can occur.

View Article and Find Full Text PDF

The objective of this study was to evaluate the clinical significance of serum ADP-ribosylation and NAD glycohydrolase activity in patients with colorectal cancer (CRC). A total of 108 patients with CRC who underwent curative surgery and 20 healthy volunteers were enrolled in this study. ADP-ribosylation and NAD glycohydrolase activity levels were determined.

View Article and Find Full Text PDF

Diphtheria toxin (DT) and its N-terminal fragment A (FA) catalyse the transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD) into a covalent linkage with eukaryotic elongation factor 2 (eEF2). DT-induced cytotoxicity is versatile, and it includes DNA cleavage and the depolymerisation of actin filaments. The inhibition of the ADP-ribosyltransferase (ADPrT) activity of FA did not affect the deoxyribonuclease activity of FA or its interaction with actin.

View Article and Find Full Text PDF

Diphtheria toxin has been well characterized in terms of its receptor binding and receptor mediated endocytosis. However, the precise mechanism of the cytosolic release of diphtheria toxin fragment A from early endosomes is still unclear. Various reports differ regarding the requirement for cytosolic factors in this process.

View Article and Find Full Text PDF

It was shown by gel filtration and viscosity measurements that N-terminal fragment (FA) of diphtheria toxin (DT) can interact with both G- and F-actin (filamentous actin). Elution profiles on Sephadex G-100 indicated the formation of a binary complex of fragment A (FA) with globular actin monomer (G-actin), which was inhibited by gelsolin. Deoxyribonuclease I (DNase I) in turn appeared to interact with this complex.

View Article and Find Full Text PDF