Objectives: Fructose 1,6 bisphosphatase (FBPase) deficiency is a rare autosomal recessively inherited metabolic disease. It is encoded by , and the enzyme catalyzes the hydrolysis of fructose-1,6-bisphosphate to fructose 6-phosphate. Patients with recurrent episodes of metabolic acidosis, hypoglycemia, hypertriglyceridemia, and hyperketonemia are present.
View Article and Find Full Text PDFThe pathophysiology of congenital defects of glycosylation (CDG) is complex and the diagnosis has been a challenge because of the overlapping clinical signs and symptoms as well as a large number of disorders. Isoelectric focusing of transferrin has been used as a screening method but has limitations. Individual enzyme or molecular genetic tests have been difficult to perform.
View Article and Find Full Text PDFIdentifying the genetic etiology in a person with hearing loss (HL) is challenging due to the extreme genetic heterogeneity in HL and the population-specific variability. In this study, after excluding GJB2 variants, targeted resequencing of 180 deafness-related genes revealed the causative variants in 11 of 19 (58%) Brazilian probands with autosomal recessive HL. Identified pathogenic variants were in MYO15A (10 families) and CLDN14 (one family).
View Article and Find Full Text PDFHearing loss is the most common sensory deficit in humans with causative variants in over 140 genes. With few exceptions, however, the population-specific distribution for many of the identified variants/genes is unclear. Until recently, the extensive genetic and clinical heterogeneity of deafness precluded comprehensive genetic analysis.
View Article and Find Full Text PDFHair cells of the inner ear, the mechanosensory receptors, convert sound waves into neural signals that are passed to the brain via the auditory nerve. Little is known about the molecular mechanisms that govern the development of hair cell-neuronal connections. We ascertained a family with autosomal recessive deafness associated with a common cavity inner ear malformation and auditory neuropathy.
View Article and Find Full Text PDFPurpose: Autosomal recessive nonsyndromic deafness (ARNSD) is characterized by a high degree of genetic heterogeneity, with reported mutations in 58 different genes. This study was designed to detect deafness-causing variants in a multiethnic cohort with ARNSD by using whole-exome sequencing (WES).
Methods: After excluding mutations in the most common gene, GJB2, we performed WES in 160 multiplex families with ARNSD from Turkey, Iran, Mexico, Ecuador, and Puerto Rico to screen for mutations in all known ARNSD genes.
In a large consanguineous Turkish kindred with recessive nonsyndromic, prelingual, profound hearing loss, we identified in the gene FAM65B (MIM611410) a splice site mutation (c.102-1G>A) that perfectly cosegregates with the phenotype in the family. The mutation leads to exon skipping and deletion of 52-amino acid residues of a PX membrane localization domain.
View Article and Find Full Text PDFMyopia is by far the most common human eye disorder that is known to have a clear, albeit poorly defined, heritable component. In this study, we describe an autosomal-recessive syndrome characterized by high myopia and sensorineural deafness. Our molecular investigation in 3 families led to the identification of 3 homozygous nonsense mutations (p.
View Article and Find Full Text PDFGenet Test Mol Biomarkers
July 2011
More than 60% of prelingual deafness is genetic in origin, and of these up to 95% are monogenic autosomal recessive traits. Causal mutations have been identified in 1 of 38 different genes in a subset of patients with nonsyndromic autosomal recessive deafness. In this study, we screened 49 unrelated Turkish families with at least three affected children born to consanguineous parents.
View Article and Find Full Text PDFGenet Test Mol Biomarkers
August 2010
The identities and frequencies of MYO15A mutations associated with hearing loss in different populations remained largely unknown. We screened the MYO15A gene for mutations in 104 unrelated multiplex and consanguineous Turkish families with autosomal recessive nonsyndromic sensorineural hearing loss using autozygosity mapping. The screening of MYO15A in 10 families mapped to the DFNB3 locus revealed five previously unreported mutations: p.
View Article and Find Full Text PDFMore than 270 million people worldwide have hearing loss that affects normal communication. Although astonishing progress has been made in the identification of more than 50 genes for deafness during the past decade, the majority of deafness genes are yet to be identified. In this study, we mapped a previously unknown autosomal-recessive nonsyndromic sensorineural hearing loss locus (DFNB91) to chromosome 6p25 in a consanguineous Turkish family.
View Article and Find Full Text PDFMutations in the NPHS2 gene are a frequent cause of familial and sporadic steroid-resistant nephrotic syndrome (SRNS). Inter-ethnic differences have also been suggested to affect the incidence of these mutations. The frequency and spectrum of podocin mutations in the Turkish population have remained largely unknown.
View Article and Find Full Text PDF