Publications by authors named "Basab Roy"

Post-transcriptional autoregulation of gene expression is common in bacteria but many fewer examples are known in eukaryotes. We used the yeast collection of genes fused to GFP as a rapid screen for examples of feedback regulation in ribosomal proteins by overexpressing a non-regulatable version of a gene and observing the effects on the expression of the GFP-fused version. We tested 95 ribosomal protein genes and found a wide continuum of effects, with 30% showing at least a 3-fold reduction in expression.

View Article and Find Full Text PDF

Methylation of CpG (cytosine-phosphate-guanine) dinucleotides is a common epigenetic mark that influences gene expression. The effects of methylation on transcription factor (TF) binding are unknown for most TFs and, even when known, such knowledge is often only qualitative. In reality, methylation sensitivity is a quantitative effect, just as changes to the DNA sequence have quantitative effects on TF binding affinity.

View Article and Find Full Text PDF

The quantitative specificity of the STAT1 transcription factor was determined by measuring the relative affinity to hundreds of variants of the consensus binding site including variations in the length of the site. The known consensus sequence is observed to have the highest affinity, with all variants decreasing binding affinity considerably. There is very little loss of binding affinity when the CpG within the consensus binding site is methylated.

View Article and Find Full Text PDF

Several variants of a nucleic acid binding motif (RRM1) of putative transcription factor hnRNP LL containing nucleobase amino acids at specific positions have been prepared and used to study binding affinity for the BCL2 i-motif DNA. Molecular modeling suggested a number of amino acids in RRM1 likely to be involved in interaction with the i-motif DNA, and His24 and Arg26 were chosen for modification based on their potential ability to interact with G14 of the i-motif DNA. Four nucleobase amino acids were introduced into RRM1 at one or both of positions 24 and 26.

View Article and Find Full Text PDF

Incorporating information about DNA structure can increase the reliability of predictions of transcription factor binding sites.

View Article and Find Full Text PDF

The recently discovered role of the BCL2 (B-cell lymphoma 2 gene) promoter i-motif DNA in modulation of gene expression via interaction with the ribonucleoprotein hnRNP L-like (hnRNP LL) has prompted a more detailed study of the nature of this protein-DNA interaction. The RNA recognition motifs (RRMs) of hnRNP LL were expressed individually, and both RRM1 and RRM2 were found to bind efficiently to the BCL2 i-motif DNA, as well as being critical for transcriptional activation, whereas RRM3-4 bound only weakly to this DNA. Binding was followed by unfolding of the DNA as monitored by changes in the CD spectrum.

View Article and Find Full Text PDF

Described herein are the syntheses and photophysical characterization of three novel cyanotryptophans, and their efficient incorporation into proteins as fluorescent probes. Photophysical characteristics indicated that each was significantly brighter and red-shifted in fluorescence emission relative to tryptophan. Each analogue was used to activate a suppressor tRNA transcript and was incorporated with good efficiency into two different positions (Trp22 and Trp74) of Escherichia coli dihydrofolate reductase (ecDHFR).

View Article and Find Full Text PDF

The donor-acceptor (D-A) type dipolar fluorophores, an important class of luminescent dyes with two-photon absorption behaviour, generally emit strongly in organic solvents but poorly in aqueous media. To understand and enhance the poor emission behaviour of dipolar dyes in aqueous media, we undertake a rational approach that includes a systematic structure variation of the donor, amino substituent of acedan, an important two-photon dye. We identify several factors that influence the emission behaviour of the dipolar dyes in aqueous media through computational and photophysical studies on new acedan derivatives.

View Article and Find Full Text PDF

In an earlier study, β³-puromycin was used for the selection of modified ribosomes, which were utilized for the incorporation of five different β-amino acids into Escherichia coli dihydrofolate reductase (DHFR). The selected ribosomes were able to incorporate structurally disparate β-amino acids into DHFR, in spite of the use of a single puromycin for the selection of the individual clones. In this study, we examine the extent to which the structure of the β³-puromycin employed for ribosome selection influences the regio- and stereochemical preferences of the modified ribosomes during protein synthesis; the mechanistic probe was a single suppressor tRNA(CUA) activated with each of four methyl-β-alanine isomers (1-4).

View Article and Find Full Text PDF

Bleomycins A5 and B2 were used to study the structural features in hairpin DNAs conducive to strong BLM-DNA interaction. Two members of a 10-hairpin DNA library previously found to bind most tightly to these BLMs were subsequently noted to share the sequence 5'-ACGC (complementary strand sequence 5'-GCGT). Each underwent double-strand cleavage at five sites within, or near, an eight base pair region of the DNA duplex which had been randomized to create the original library.

View Article and Find Full Text PDF

In a recent study, we described the enhanced double-strand cleavage of hairpin DNAs by Fe·bleomycin (Fe·BLM) that accompanies increasingly strong binding of this antitumor agent and suggested that this effect may be relevant to the mechanism by which BLM mediates its antitumor effects. Because the DNA in tumor cells is known to be hypomethylated on cytidine relative to that in normal cells, it seemed of interest to study the possible effects of methylation status on BLM-induced double-strand DNA cleavage. Three hairpin DNAs found to bind strongly to bleomycin, and their methylated counterparts, were used to study the effect of methylation on bleomycin-induced DNA degradation.

View Article and Find Full Text PDF

As part of our ongoing efforts to identify compounds having potential utility in treating neurodegenerative and mitochondrial disorders, a series of pyridinol analogues have been prepared. The synthetic route employed for the preparation of the new analogues is different, and considerably more efficient, than that used in previously reported studies. The new route yields a pair of pyridinol regioisomers that can be readily separated and evaluated.

View Article and Find Full Text PDF

A series of aza analogues (4-9) of the experimental neuroprotective drug idebenone (1) have been prepared and evaluated for their ability to attenuate oxidative stress induced by glutathione depletion and to compensate for the decrease in oxidative phosphorylation efficiency in cultured Friedreich's ataxia (FRDA) fibroblasts and lymphocytes and also coenzyme Q10-deficient lymphocytes. Modification of the redox core of the previously reported 3 improved its antioxidant and cytoprotective properties. Compounds 4-9, having the same redox core, exhibited a range of antioxidant activities, reflecting side chain differences.

View Article and Find Full Text PDF

Since the early nineties there have been a number of reports on the experimental development of Mg electrolytes based on organo/amide-magnesium chlorides and their transmetalations. However, there are no theoretical papers describing the underlying operating mechanisms of Mg electrolytes, and there is no clear understanding of these mechanisms. We have therefore attempted to clarify the operating mechanisms of Mg electrolytes by studying the characteristics of Mg complexes, solvation, chemical equilibrium, Mg-deposition processes, electrolyte-oxidation processes, and oxidative degradation mechanism of RMgCl-based electrolytes, using ab initio calculations.

View Article and Find Full Text PDF

Clinically used bleomycin A5 has been employed in a study of double-strand cleavage of a library of 10 hairpin DNAs originally selected on the basis of their strong binding to bleomycin. Each of the DNAs underwent double-strand cleavage at more than one site, and all of the cleavage sites were within, or in close proximity to, an eight-base-pair region of the duplex that had been randomized to create the original library. A total of 31 double-strand cleavage sites were identified on the 10 DNAs, and 14 of these sites were found to represent coupled cleavage sites, that is, events in which one of the two strands was always cleaved first, followed by the associated site on the opposite strand.

View Article and Find Full Text PDF

A study of BLM A5 was conducted using a previously isolated library of hairpin DNAs found to bind strongly to metal-free BLM. The ability of Fe(II)·BLM to affect cleavage on both the 3' and 5' arms of the hairpin DNAs was characterized. The strongly bound DNAs were found to be efficient substrates for Fe·BLM A5-mediated hairpin DNA cleavage.

View Article and Find Full Text PDF

Mononuclear Zn(II)-DPA and Cu(II)-DPA complexes crafted on 2-hydroxy-6-cyanonaphthalene fluorophore selectively recognize PPi over ATP and other anions including inorganic phosphates in aqueous medium, showing turn-on type fluorescence enhancements. Coordination of a hydroxyl group of the fluorophore, directly or in alkoxy form, to the central metal ion is crucial for the sensing processes. Both the complexes elicit a fluorescence increase in a time-dependent fashion.

View Article and Find Full Text PDF

A ratiometric fluorescent probe for mercury species is developed based on the metal-promoted hydrolysis of a vinyl ether derivative of 2-(benzothiazol-2-yl)phenol in a buffer solution. The probe responds selectively to mercury species over various other metal ions with a marked fluorescence change from blue to cyan through the excited state intramolecular proton transfer (ESIPT) process. The fluorescence titration is complete with 0.

View Article and Find Full Text PDF

Chemical probes are valuable tools for the investigation of biochemical processes, diagnosis of disease markers, detection of hazardous compounds, and other purposes. Therefore, the development of chemical probes continues to grow through various approaches with different disciplines and design strategies. Fluorescent probes have received much attention because they are sensitive and easy-to-operate, in general.

View Article and Find Full Text PDF

A new class of chimeric molecules have been developed. These are based on polyphenols like catechin and epicatechin and monocyclic beta-lactams. The two units are joined via a triazole linker using the 'Click Chemistry' conditions.

View Article and Find Full Text PDF

Several novel catechin/epicatechin and nucleobase chimeric molecules 1-6 have been synthesized via azide-alkyne click chemistry. The structures of these hybrids have been confirmed by NMR and mass spectroscopic data. The synthesized molecules were tested for their RNase A inhibition activities.

View Article and Find Full Text PDF

Enediynes continue to fascinate scientists working in various domains because of their structural complexity and fascinating biological mode of action. They represent a masterpiece of nature's ingenuity. Besides the warhead which is the enediyne moiety, these molecules are equipped with a locking device, a delivery system and a chemical trigger for activation.

View Article and Find Full Text PDF