Publications by authors named "Bas A de Jong"

Background: Proton arcs have shown potential to reduce the dose to organs at risks (OARs) by delivering the protons from many different directions. While most previous studies have been focused on dynamic arcs (delivery during rotation), an alternative approach is discrete arcs, where step-and-shoot delivery is used over a large number of beam directions. The major advantage of discrete arcs is that they can be delivered at existing proton facilities.

View Article and Find Full Text PDF

Background And Purpose: In the model-based approach, patients qualify for proton therapy when the reduction in risk of toxicity (ΔNTCP) obtained with IMPT relative to VMAT is larger than predefined thresholds as defined by the Dutch National Indication Protocol (NIPP). Proton arc therapy (PAT) is an emerging technology which has the potential to further decrease NTCPs compared to IMPT. The aim of this study was to investigate the potential impact of PAT on the number of oropharyngeal cancer (OPC) patients that qualify for proton therapy.

View Article and Find Full Text PDF

Background: Proton arc technology has recently shown dosimetric gains for various treatment indications. The increased number of beams and energy layers (ELs) in proton arc plans, increases the degrees of freedom in plan optimization and thereby flexibility to spare dose in organs at risk (OARs). A relationship exists between dosimetric plan quality, delivery efficiency, the number of ELs -and beams in a proton arc plan.

View Article and Find Full Text PDF

Cone-beam computed tomography (CBCT)- and magnetic resonance (MR)-images allow a daily observation of patient anatomy but are not directly suited for accurate proton dose calculations. This can be overcome by creating synthetic CTs (sCT) using deep convolutional neural networks. In this study, we compared sCTs based on CBCTs and MRs for head and neck (H&N) cancer patients in terms of image quality and proton dose calculation accuracy.

View Article and Find Full Text PDF

Introduction: The implementation of spatial-covariance [F]fluorodeoxyglucose positron emission tomography-based disease-related metabolic brain patterns as biomarkers has been hampered by intercenter imaging differences. Within the scope of the JPND-PETMETPAT working group, we illustrate the impact of these differences on Parkinson's disease-related pattern (PDRP) expression scores.

Methods: Five healthy controls, 5 patients with idiopathic rapid eye movement sleep behavior disorder, and 5 patients with Parkinson's disease were scanned on one positron emission tomography/computed tomography system with multiple image reconstructions.

View Article and Find Full Text PDF