Developing new organic radical emission systems and regulating their luminescence properties presents a significant challenge. Herein, we build dynamic and multi-emission band radical luminescence systems by co-assembling inorganic metal salts with carbonyl compounds in ionic liquids. After the assembling, dual-band, and excitation wavelength-dependent emission was observed upon ultraviolet light irradiation, one emission band originates from carbonyl radical after light irradiation, the other band from the ligand-metal charge transfer (LMCT) state, which benefits from the charge transfer from the radicals to the metal salts.
View Article and Find Full Text PDFAlthough photochromic molecules have attracted widespread interest in various fields, solid-state photochromism remains a formidable challenge, owing to the substantial conformational constraints that hinder traditional molecular photoisomerization processes. Benefiting from the significant color change upon radical generation, chemical systems enabling a photoinduced radical (PIR) behavior through photoinduced electron transfer (PET) could be ideal candidates for solid-state photochromism within minimized need of conformational freedom. However, the transient nature of radicals causes a dilemma in this Scheme.
View Article and Find Full Text PDFIn this work, we disclose a series of seven quadrupolar centrosymmetric 1,4-dihydropyrrolo[3,2-]pyrroles (DHPPs) linked to the two peripheral, strongly electron-accepting heterocycles such as benzoxadiazole, benzothiadiazole and benzoselenadiazole. This represents the first study probing the influence of electron-deficient heterocycles, rather that small electron-withdrawing substituents, on photophysics of DHPPs. These new acceptor-donor-acceptor hybrid dyes exhibit an appreciable combination of photophysical properties including absorption maxima in the range of 470-620 nm, and emission in the range of 500-720 nm with fluorescence quantum yields reaching 0.
View Article and Find Full Text PDFTo enhance the usually low-charge carrier mobilities of highly twisted donor-acceptor-type compounds that exhibit thermally activated delayed fluorescence, we designed a rodlike acceptor benzodioxinoquinoxaline. This acceptor and two donor-acceptor-donor derivatives were synthesized via microwave Buchwald-Hartwig cross-coupling reactions with yields of up to 91%. The compounds exhibit three different types of photoluminescence, which is well-explained by quantum chemical calculations.
View Article and Find Full Text PDFThe N-confused [14]triphyrin(2.1.1) was facilely synthesized and readily converted into N-confused triphyrinone(2.
View Article and Find Full Text PDFA new family of symmetrical fluorene derivatives with different types of substituents attached to the C-2 and C-7 positions of the fluorene core synthesized by the Sonogashira coupling reactions is reported. The electronic structures and the properties of the compounds investigated by means of photoelectron emission spectroscopy, UV-Vis absorption and photoluminescent spectroscopy as well as by DFT and TD-DFT theoretical calculations are discussed. It is shown that the nature of substituents influences the π-conjugation of the molecules.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Two donor-acceptor dyes with an -phenylene-linked carbazole electron donor and a benzothiazole-fused boron heterocyclic acceptor were designed, synthesized, and spectroscopically investigated. Due to the steric effects of boron heterocyclic units, the dyes demonstrate different conformations in the crystalline state. The presence of numerous hydrogen-bonding intermolecular interactions and the very weak π-π stacking in the molecular packing results in intense solid-state emission with photoluminescence quantum yields of 40 and 18% for crystals and 50 and 42% for host-based light-emitting layers.
View Article and Find Full Text PDFA design strategy has been proposed to utilize structure-driven solution and solid-state fluorescence emission of polynitrogen atoms. The strategy uses benzimidazole as the electron donor and pyridine as the electron acceptor to construct D-A-type cyanopyridine ethylene molecules. Theoretical calculations reveal that compound 1 has energy-close isomers in dilute solutions, with planar conformation in S and S states, reducing molecular motion and thus enhancing radiation efficiency (quantum yield up to 42.
View Article and Find Full Text PDFDue to the general incompleteness of photochemical reactions, the photostationary structure in traditional photo-controlled host-guest self-assembly transfer is usually disordered or irregular. This fact readily affects the photoregulation or improvement of related material properties. Herein, a photoexcitation-induced aggregation molecule, hydroxyl hexa(thioaryl)benzene (HB), was grafted into β-cyclodextrin to form a host-guest system.
View Article and Find Full Text PDFThe intensive interest in expanded porphyrins can be attributed to their appealing photoelectric and coordination behavior. In this work, an N-confused heptaphyrin 1 was synthesized by an acid-catalyzed [3+4] condensation reaction. The introduction of an N-confused pyrrolic unit into the heptaphyrin macrocycle led to the formation of a figure-eight-like conformation with nonsymmetrical "NNNN" and "NNNC" coordination cavities employable for bimetallic coordination.
View Article and Find Full Text PDFFused porphyrinoids have received increasing interest in light of their extended conjugation and unique coordination behavior. On the basis of our previously reported multiply fused pentaphyrin isomers and , a novel isomer has been synthesized in this work. possesses a hexacyclic fused moiety with a nearly coplanar CCNN cavity involving an inverted pyrrole, which is slightly different from the CNNN ones of and involving an N-confused pyrrole.
View Article and Find Full Text PDFThe ability of small lipophilic molecules to penetrate the blood-brain barrier through transmembrane diffusion has enabled researchers to explore new diagnostics and therapies for brain disorders. Until now, therapies targeting the brain have mainly relied on biochemical mechanisms, while electrical treatments such as deep brain stimulation often require invasive procedures. An alternative to implanting deep brain stimulation probes could involve administering small molecule precursors intravenously, capable of crossing the blood-brain barrier, and initiating the formation of conductive polymer networks in the brain through polymerization.
View Article and Find Full Text PDFConfining luminophores into modified hydrophilic matrices or polymers is a straightforward and widely used approach for afterglow bioimaging. However, the afterglow quantum yield and lifetime of the related material remain unsatisfactory, severely limiting the using effect especially for deep-tissue time-resolved imaging. This fact largely stems from the dilemma between material biocompatibility and the quenching effect of water environment.
View Article and Find Full Text PDFThe effective treatment of nitrate (NO) in water as a nitrogen source and electrocatalytic NO reduction to ammonia (NH) (NRA) have become preferred methods for NO-to-NH conversion. Achieving efficient NO-to-NH conversion requires the design and development of electrode materials with high activity and efficiency for the electrocatalytic NRA reaction. Herein, based on the special properties of dodecahydro-closo-dodecaborate anions, a BCN matrix, loaded with platinum-group nanoparticles (namely, Pd/BCN, Pt/BCN, and Ru/BCN), was prepared using a simple method for the electrocatalytic NRA reaction.
View Article and Find Full Text PDFTo further enrich the coordination chemistry of hexaphyrins and probe the underlying property-structural correlations, N-confused dithiahexaphyrin(1.1.1.
View Article and Find Full Text PDFDirect infusion ionization methods provide the highest throughput strategy for mass spectrometry (MS) analysis of low-volume samples. But the trade-off includes matrix effects, which can significantly reduce analytical performance. Herein, we present a novel chemical approach to tackle a special type of matrix effect, namely type II isobaric overlap.
View Article and Find Full Text PDFThiahexaphyrinone and thia-dipyrrin-appended corrorin have been synthesized. Surprisingly, further oxidation of compound with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in dichloromethane afforded dimer with two molecules of compound linked at the α-carbon atoms of the thienyl units. Treatment of compound with DDQ in MeOH and SnCl in tetrahydrofuran/HO afforded the dimethoxy-attached dimer and hydrogenated dihydroxy-attached dimer , respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2024
Molecular emitters with multi-emissive properties are in high demand in numerous fields, while these properties basically depend on specific molecular conformation and packing. For amorphous systems, special molecular arrangement is unnecessary, but it remains challenging to achieve such luminescent behaviors. Herein, we present a general strategy that takes advantage of molecular rigidity and S -T energy gap balance for emitter design, which enables fluorescence-phosphorescence dual-emission properties in various solid forms, whether crystalline or amorphous.
View Article and Find Full Text PDFUtilizing water molecules to regulate the luminescence properties of solid materials is highly challenging. Herein, we develop a strategy to produce water-triggered luminescence-switching cocrystals by coassembling hydrophilic donors with electron-deficient acceptors, where 1,2,4,5-Tetracyanobenzene (TCNB) was used as the electron acceptor and pyridyl benzimidazole derivatives were used as the electron donors enabling multiple hydrogen-bonds. Two cocrystals, namely 2PYTC and 4PYTC were obtained and showed heat-activated emission, and such emission could be quenched or weakened by adding water molecules.
View Article and Find Full Text PDFChemodynamic therapy (CDT) is an emerging treatment strategy that inhibits tumor growth by catalyzing the generation of reactive oxygen species (ROS), such as hydroxyl radicals (•OH), using specific nanomaterials. Herein, we have developed a new class of iron-based nanomaterials, i.e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
Developing a free radical emission system in different states, especially in water, is highly challenging and desired. Herein, a host-guest coassembly strategy was used to protect the in situ photoactivated radical emission of carbonyl compounds in solid and aqueous solutions by doping them into a series of small molecules with hydroxyl groups. The intermolecular interactions between host and guest and the electron-donating ability of the hydroxyl group can significantly promote the formation and stabilization of luminescence by carbonyl radicals.
View Article and Find Full Text PDFThe high luminescence efficiency of cyclometallated iridium(iii) complexes, including those widely used in OLEDs, is typically attributed solely to the formally spin-forbidden phosphorescence process being facilitated by spin-orbit coupling with the Ir(iii) centre. In this work, we provide unequivocal evidence that an additional mechanism can also participate, namely a thermally activated delayed fluorescence (TADF) pathway. TADF is well-established in other materials, including in purely organic compounds, but has never been observed in iridium complexes.
View Article and Find Full Text PDFPolymer dots (PDs) have raised considerable research interest due to their advantages of designable nanostructures, high biocompatibility, versatile photoluminescent properties, and recyclability as nanophase. However, there remains a lack of , real-time, and noncontact methods for synthesizing PDs. Here we report a rational strategy to synthesize PDs through a well-designed single-component precursor (an asymmetrical donor-acceptor-donor' molecular structure) by photoirradiation at ambient temperature.
View Article and Find Full Text PDFAs conducting polymers become increasingly important in electronic devices, understanding their charge transport is essential for material and device development. Various semi-empirical approaches have been used to describe temporal charge carrier dynamics in these materials, but there have yet to be any theoretical approaches utilizing ab initio molecular dynamics. In this work, we develop a computational technique based on ab initio Car-Parrinello molecular dynamics to trace charge carrier temporal motion in archetypical conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT).
View Article and Find Full Text PDF