Publications by authors named "Bartosz Bielecki"

Astrocytes play an important role in the regulation of the inflammatory response in the CNS, e.g., in demyelinating diseases.

View Article and Find Full Text PDF

Objectives: Fingolimod is indicated for the treatment of relapsing-remitting multiple sclerosis (RRMS) patients with highly aggressive disease characterized by frequent relapses and active magnetic resonance imaging. Its efficacy has been demonstrated in three large phase III trials, used in the regulatory submissions throughout the world. Fingolimod in licensed in Europe since 2011 but with a growing number of disease-modifying drugs (DMD) becoming available for RRMS, it is important to gather real-world evidence data regarding long-term effectiveness in treated patients with MS.

View Article and Find Full Text PDF

Lost myelin can be replaced after injury or during demyelinating diseases in a regenerative process called remyelination. In the central nervous system (CNS), the myelin sheaths, which protect axons and allow the fast propagation of electrical impulses, are produced by oligodendrocytes. The abundance and widespread distribution of oligodendrocyte progenitors (OPs) within the adult CNS account for this remarkable regenerative potential.

View Article and Find Full Text PDF

It is well documented that inflammatory chemokines play a significant role in the development of multiple sclerosis (MS) and its model, experimental autoimmune encephalomyelitis (EAE). Recently, the involvement of homeostatic (or lymphoid) chemokines in the pathogenesis of autoimmune diseases has become an object of intensive study. In this work, quantitative analysis of CCL19, CCL21 and CCR7 expression in the central nervous system (CNS), as well as in inflammatory mononuclear cells isolated from several organs during the first attack, remission and the second attack of chronic-relapsing EAE (ChREAE), was performed.

View Article and Find Full Text PDF

Myelin regeneration is a major therapeutic goal in demyelinating diseases, and the failure to remyelinate rapidly has profound consequences for the health of axons and for brain function. However, there is no efficient treatment for stimulating myelin repair, and current therapies are limited to anti-inflammatory agents. Males are less likely to develop multiple sclerosis than females, but often have a more severe disease course and reach disability milestones at an earlier age than females, and these observations have spurred interest in the potential protective effects of androgens.

View Article and Find Full Text PDF

Chemokines and their receptors are involved in the development of multiple sclerosis (MS). Methylprednisolone (MP) and mitoxantrone (MTX) are commonly used in the treatment of MS. In this study, we analyzed the expression of chemokine receptors CXCR1, CXCR2, CXCR3, CXCR4, and CXCR5 in peripheral blood mononuclear cells (PBMC) from MS patients before and after treatment with MP or MTX.

View Article and Find Full Text PDF

In multiple sclerosis (MS), myelin destroyed by the immune attack is not effectively repaired by oligodendrocytes (OLs) and MS foci eventually undergo glial scarring. Although oligodendrocyte precursor cells (OPCs) are normally recruited to the lesion areas, they fail to mature and remyelinate the damaged fibers. Activation of the Notch pathway has been shown to inhibit OPC differentiation and to hamper their ability to produce myelin during CNS development.

View Article and Find Full Text PDF

By combining all the data available from the Genetic Analysis of Multiple sclerosis in EuropeanS (GAMES) project, we have been able to identify 17 microsatellite markers showing consistent evidence for apparent association. As might be expected five of these markers map within the Major Histocompatibility Complex (MHC) and are in LD with HLA-DRB1. Individual genotyping of the 12 non-MHC markers confirmed association for three of them--D11S1986, D19S552 and D20S894.

View Article and Find Full Text PDF

Oligodendrocytes (OLs) fail to regenerate myelin destroyed by the immune attack in multiple sclerosis (MS) and lesion areas are eventually largely occupied by astrocytic scar tissue. Loss of OLs in MS does not account for the limited myelin repair as lesions contain a considerable number of OL precursor cells (OPC). Activation of the Notch pathway has been shown to provide inhibitory signals for OPC and to hamper their ability to produce myelin during CNS development.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease with pathological and clinical similarities to the major human demyelinating disease multiple sclerosis (MS). Multiple lines of evidence in recent years implicate the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) in the pathogenesis of both EAE and MS. TNF-alpha cellular responses are mediated by signaling through receptors, which are expressed in two functional forms, designated according to molecular weight p55/60 and p75/80.

View Article and Find Full Text PDF

We have performed the first systematic search for MS susceptibility genes completed in the Polish population. This screen was performed using 6000 microsatellite markers typed in pooled DNA from cases (n=200), controls (n=200) and trio families (n=129). Five associated markers are identified, one (D6S2444) from the HLA region and four are from novel regions not previously associated with MS, 2p16 (D2S2153), 3p13 (D3S3568), 7p22 (D7S2521) and 15q26 (D15S649).

View Article and Find Full Text PDF

Chemokines (chemoattractant cytokines) are key players in the initiation of inflammatory cell accumulation in the central nervous system (CNS). Mechanisms leading to upregulation of chemokines in CNS pathologic conditions remain largely unknown. Numerous in vitro studies showed that inflammatory cytokines stimulate cultured CNS cells to produce chemokines.

View Article and Find Full Text PDF

Chemokines are chemotactic cytokines, which stimulate migration of inflammatory cells towards tissue sites of inflammation. The largest chemokine group, termed CC chemokines (CCLs), act primarily on T cells and monocytes, through CC chemokine receptors (CCRs) belonging to the superfamily of G-protein coupled seven transmembrane domain receptors. CCR expression is a critical determinant of cellular responses to CCLs.

View Article and Find Full Text PDF