Publications by authors named "Bartos Przybyla"

Space radiation is a notable hazard for long-duration human spaceflight. Associated risks include cancer, cataracts, degenerative diseases and tissue reactions from large, acute exposures. Space radiation originates from diverse sources, including galactic cosmic rays, trapped-particle (Van Allen) belts and solar-particle events.

View Article and Find Full Text PDF

Two DOSimetry TELescopes (DOSTELs) have been measuring the radiation environment in the Columbus module of the International Space Station (ISS) since 2009 in the frame of the DOSIS and DOSIS 3D projects. Both instruments have measured the charged particle flux rate and dose rates in a telescope geometry of two planar silicon detectors. The radiation environment in the ISS orbit is mostly composed by galactic cosmic radiation (GCR) and its secondary radiation and protons from the inner radiation belt in the South Atlantic Anomaly (SAA) with sporadic contributions of solar energetic particles at high latitudes.

View Article and Find Full Text PDF

Purpose: To evaluate the radiation protection offered by an exoskeleton-based radiation protection system (Stemrad MD) and to compare it with that offered by conventional lead aprons.

Methods: The experimental setup involved 2 anthropomorphic phantoms, an operator, a patient, and a C-arm as the x-ray radiation source. Thermoluminescent detectors were used to measure radiation doses to different radiosensitive body parts on the operator phantom both with the exoskeleton and a conventional lead apron at the left radial and right femoral positions.

View Article and Find Full Text PDF

Radiation of ionizing or non-ionizing nature has harmful effects on cellular components like DNA as radiation can compromise its proper integrity. To cope with damages caused by external stimuli including radiation, within living cells, several fast and efficient repair mechanisms have evolved. Previous studies addressing organismic radiation tolerance have shown that radiotolerance is a predominant property among extremophilic microorganisms including (hyper-) thermophilic archaea.

View Article and Find Full Text PDF

Some microarray-based instruments that use bioaffinity receptors such as antibodies or aptamers are under development to detect signatures of past or present life on planetary bodies. Studying the resistance of such instruments against space constraints and cosmic rays in particular is a prerequisite. We used several ground-based facilities to study the resistance of aptamers to various types of particles (protons, electrons, neutrons, and carbon ions) at different energies and fluences.

View Article and Find Full Text PDF

Antibody-based analytical instruments are under development to detect signatures of life on planetary bodies. Antibodies are molecular recognition reagents able to detect their target at sub-nanomolar concentrations, with high affinity and specificity. Studying antibody binding performances under space conditions is mandatory to convince space agencies of the adequacy of this promising tool for planetary exploration.

View Article and Find Full Text PDF

One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm0s2iua25k49ealigg63vgdqifa7on3g): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once