Bisphenol A (BPA), a widely used chemical in the production of plastics and epoxy resins, has garnered significant attention due to its association with adverse health effects, particularly its endocrine-disrupting properties. Regulatory measures aimed at reducing human exposure to BPA have led to a proliferation of alternative chemicals used in various consumer and industrial products. While these alternatives serve to reduce BPA exposure, concerns have arisen regarding their safety and potential toxicity as regrettable substitutes.
View Article and Find Full Text PDFComputational toxicology models have been successfully implemented to prioritize and screen chemicals. There are numerous (quantitative) structure-activity relationship ([Q]SAR) models for the prediction of a range of human-relevant toxicological endpoints, but for a given endpoint and chemical, not all predictions are identical due to differences in their training sets, algorithms, and methodology. This poses an issue for high-throughput screening of a large chemical inventory as it necessitates several models to cover diverse chemistries but will then generate data conflicts.
View Article and Find Full Text PDFRead-across is an in silico method applied in chemical risk assessment for data-poor chemicals. The read-across outcomes for repeated-dose toxicity end points include the no-observed-adverse-effect level (NOAEL) and estimated uncertainty for a particular category of effects. We have previously developed a new paradigm for estimating NOAELs based on chemoinformatics analysis and experimental study qualities from selected analogues, not relying on quantitative structure-activity relationships (QSARs) or rule-based SAR systems, which are not well-suited to end points for which the underpinning data are weakly grounded in specific chemical-biological interactions.
View Article and Find Full Text PDFThe growing number of chemicals in the current consumer and industrial markets presents a major challenge for regulatory programs faced with the need to assess the potential risks they pose to human and ecological health. The increasing demand for hazard and risk assessment of chemicals currently exceeds the capacity to produce the toxicity data necessary for regulatory decision making, and the applied data is commonly generated using traditional approaches with animal models that have limited context in terms of human relevance. This scenario provides the opportunity to implement novel, more efficient strategies for risk assessment purposes.
View Article and Find Full Text PDFAcute models are being used to support an increasing number of application areas including (1) product research and development, (2) product approval and registration as well as (3) the transport, storage and handling of chemicals. The adoption of such models is being hindered, in part, because of a lack of guidance describing how to perform and document an analysis. To address this issue, a framework for an acute toxicity hazard assessment is proposed.
View Article and Find Full Text PDFSince initial regulatory action in 2010 in Canada, bisphenol A (BPA) has been progressively replaced by structurally related alternative chemicals. Unfortunately, many of these chemicals are data-poor, limiting toxicological risk assessment. We used high-throughput transcriptomics to evaluate potential hazards and compare potencies of BPA and 15 BPA alternative chemicals in cultured breast cancer cells.
View Article and Find Full Text PDFGenotoxicity assessment is a critical component in the development and evaluation of chemicals. Traditional genotoxicity assays (i.e.
View Article and Find Full Text PDFQuantitative relationships between carcinogenic potency and mutagenic potency have been previously examined using a benchmark dose (BMD)-based approach. We extended those analyses by using human exposure data for 48 compounds to calculate carcinogenicity-derived and genotoxicity-derived margin of exposure values (MOEs) that can be used to prioritize substances for risk management. MOEs for 16 of the 48 compounds were below 10,000, and consequently highlighted for regulatory concern.
View Article and Find Full Text PDFAn area of ongoing concern in toxicology and chemical risk assessment is endocrine disrupting chemicals (EDCs). However, thousands of legacy chemicals lack the toxicity testing required to assess their respective EDC potential, and this is where computational toxicology can play a crucial role. The US (United States) Environmental Protection Agency (EPA) has run two programs, the Collaborative Estrogen Receptor Activity Project (CERAPP) and the Collaborative Modeling Project for Receptor Activity (CoMPARA) which aim to predict estrogen and androgen activity, respectively.
View Article and Find Full Text PDFUse of molecular data in human and ecological health risk assessments of industrial chemicals and agrochemicals has been anticipated by the scientific community for many years; however, these data are rarely used for risk assessment. Here, a logic framework is proposed to explore the feasibility and future development of transcriptomic methods to refine and replace the current apical endpoint-based regulatory toxicity testing paradigm. Four foundational principles are outlined and discussed that would need to be accepted by stakeholders prior to this transformative vision being realized.
View Article and Find Full Text PDFNew approach methodologies (NAMs) are increasingly being used for regulatory decision making by agencies worldwide because of their potential to reliably and efficiently produce information that is fit for purpose while reducing animal use. This article summarizes the ability to use NAMs for the assessment of human health effects of industrial chemicals and pesticides within the United States, Canada, and European Union regulatory frameworks. While all regulations include some flexibility to allow for the use of NAMs, the implementation of this flexibility varies across product type and regulatory scheme.
View Article and Find Full Text PDFRisk assessments are increasingly reliant on information from in vitro assays. The in vitro micronucleus test (MNvit) is a genotoxicity test that detects chromosomal abnormalities, including chromosome breakage (clastogenicity) and/or whole chromosome loss (aneugenicity). In this study, MNvit datasets for 292 chemicals, generated by the US EPA's ToxCast program, were evaluated using a decision tree-based pipeline for hazard identification.
View Article and Find Full Text PDFIn 2012, the Council of Canadian Academies published the expert panel on integrated testing of pesticide's report titled: Integrating emerging technologies into chemical safety assessment. This report was prepared for the Government of Canada in response to a request from the Minister of Health and on behalf of the Pest Management Regulatory Agency. It examined the scientific status of the use of integrated testing strategies for the regulatory health risk assessment of pesticides while noting the data-rich/poor dichotomy that exists when comparing pesticide formulations to most industrial chemicals.
View Article and Find Full Text PDFModeling developmental toxicity has been a challenge for (Q)SAR model developers due to the complexity of the endpoint. Recently, some new in silico methods have been developed introducing the possibility to evaluate the integration of existing methods by taking advantage of various modeling perspectives. It is important that the model user is aware of the underlying basis of the different models in general, as well as the considerations and assumptions relative to the specific predictions that are obtained from these different models for the same chemical.
View Article and Find Full Text PDFThe replacement of regulated brominated flame retardants and plasticizers with organophosphate esters (OPEs) has led to their pervasive presence in the environment and in biological matrices. Further, there is evidence that exposure to some of these chemicals is associated with reproductive toxicity. Using a high-content imaging approach, we assessed the effects of exposure to 9 OPEs on cells related to reproductive function: KGN human granulosa cells, MA-10 mouse Leydig cells, and C18-4 mouse spermatogonial cells.
View Article and Find Full Text PDFInternationally, there are thousands of existing and newly introduced chemicals in commerce, highlighting the ongoing importance of innovative approaches to identify emerging chemicals of concern. For many chemicals, there is a paucity of hazard and exposure data. Thus, there is a crucial need for efficient and robust approaches to address data gaps and support risk-based prioritization.
View Article and Find Full Text PDFThe developmental and reproductive toxicity associated with exposure to phthalates has motivated a search for alternatives. However, there is limited knowledge regarding the adverse effects of some of these chemicals. We used high-content imaging to compare the effects of mono (2-ethylhexyl) phthalate (MEHP) with six alternative plasticizers: di-2-ethylhexyl terephthalate (DEHTP); diisononyl-phthalate (DINP); di-isononylcyclohexane-1,2-dicarboxylate (DINCH); 2-ethylhexyl adipate (DEHA); 2,2,4-trimethyl 1,3-pentanediol diisobutyrate (TXIB) and di-iso-decyl-adipate (DIDA).
View Article and Find Full Text PDFGlobally, regulatory authorities grapple with the challenge of assessing the hazards and risks to human and ecosystem health that may result from exposure to chemicals that disrupt the normal functioning of endocrine systems. Rapidly increasing number of chemicals in commerce, coupled with the reliance on traditional, costly animal experiments for hazard characterization - often with limited sensitivity to many important mechanisms of endocrine disruption -, presents ongoing challenges for chemical regulation. The consequence is a limited number of chemicals for which there is sufficient data to assess if there is endocrine toxicity and hence few chemicals with thorough hazard characterization.
View Article and Find Full Text PDFNext generation risk assessment (NGRA) is an exposure-led, hypothesis-driven approach that has the potential to support animal-free safety decision-making. However, significant effort is needed to develop and test the in vitro and in silico (computational) approaches that underpin NGRA to enable confident application in a regulatory context. A workshop was held in Montreal in 2019 to discuss where effort needs to be focussed and to agree on the steps needed to ensure safety decisions made on cosmetic ingredients are robust and protective.
View Article and Find Full Text PDFBackground: Decades of research to understand the impacts of various types of environmental occupational and medical stressors on human health have produced a vast amount of data across many scientific disciplines. Organizing these data in a meaningful way to support risk assessment has been a significant challenge. To address this and other challenges in modernizing chemical health risk assessment, the Organisation for Economic Cooperation and Development (OECD) formalized the adverse outcome pathway (AOP) framework, an approach to consolidate knowledge into measurable key events (KEs) at various levels of biological organisation causally linked to disease based on the weight of scientific evidence (http://oe.
View Article and Find Full Text PDFConcerns about the potential adverse effects of bisphenol A (BPA) have led to an increase in the use of replacements, yet the toxicity data for several of these chemicals are limited. Using high-content imaging, we compared the effects of BPA, BPAF, BPF, BPS, BPM, and BPTMC in germ (C18-4 spermatogonial) and steroidogenic (MA-10 Leydig and KGN granulosa) cell lines. Effects on cell viability and phenotypic markers were analyzed to determine benchmark concentrations (BMCs) and estimate administered equivalent doses (AEDs).
View Article and Find Full Text PDFLimited human exposure and toxicity data are currently available for 4,5,6,7-Tetrabromo-2,3-dihydro-1,1,3-trimethyl-3-(2,3,4,5-tetrabromophenyl)-1H-indene (OBTMPI), a flame retardant often used for high temperature application of various polymer materials. Levels of OBTMPI in a cohort population that includes children and their co-residing parents (n = 217) in Canada were determined. Detection frequency of OBTMPI in the samples was 22.
View Article and Find Full Text PDFDetermination of the no observed adverse effect level (NOAEL) of a substance is an important step in safety and regulatory assessments. Application of conventional strategies, for example, quantitative structure-activity relationship (QSAR) models, to predict NOAEL values is inherently problematic. Whereas QSAR models for well-defined toxicity endpoints such as Ames mutagenicity or skin sensitization can be developed from mechanistic knowledge of molecular initiating events and adverse outcome pathways, QSAR is not appropriate for predicting a NOAEL value, a concentration at which "no effect" is observed.
View Article and Find Full Text PDFRead-across (RAx) translates available information from well-characterized chemicals to a substance for which there is a toxicological data gap. The OECD is working on case studies to probe general applicability of RAx, and several regulations (e.g.
View Article and Find Full Text PDF