Publications by authors named "Bartlomiej Mazela"

The need for sustainable, biodegradable materials to address environmental challenges, such as oil-water separation, is growing. Cellulose-based absorbents offer an eco-friendly alternative to synthetic materials. However, their hydrophobicity must be enhanced for efficient application.

View Article and Find Full Text PDF

This article presents the results of flame-retardancy tests conducted on cellulose sheets produced using a Rapid Köthen apparatus treated with retardants. The agents used were potassium carbonate (PC) KCO (concentrations of 20; 33.3; and 50% wt/wt), monoammonium phosphate (MAP) NHHPO (concentrations of 35% wt/wt), diammonium phosphate (DAP) (NH)HPO (concentrations of 42.

View Article and Find Full Text PDF

Phosphorylated cellulose can be an intrinsic flame retardant and a promising alternative for halogenated fire inhibitors. In this study, the mixture of di-ammonium hydrogen phosphate (DAP) and urea (U), containing phosphate and nitrogen groups, was applied to attain fire inhibitor properties. Functional groups of cellulose were grafted with phosphorous by keeping the constant molar ratio of 1/1.

View Article and Find Full Text PDF

Modifying natural polymers with silicones gives new possibilities for packaging products and waste management. In this study, the innovative papers produced were altered following the reaction of polysaccharides and organosilicon compounds. The susceptibility of the studied material to biodegradation caused by a brown-rot fungus was assessed.

View Article and Find Full Text PDF

This article describes how crystalline or fibrous nanocellulose influences the mechanical properties of paper substrate. In this context, we used commercially available cellulose nanocrystals, mechanically prepared cellulose nanofibers dispersed in water or ethanol, and carboxy cellulose nanofibers. Selective reinforcement of the paper treated with the nanocellulose samples mentioned above was observed.

View Article and Find Full Text PDF

Starch is an inexpensive, easily accessible, and widespread natural polymer. Due to its properties and availability, this polysaccharide is an attractive precursor for sustainable products. Considering its exploitation in adhesives and coatings, the major drawback of starch is its high affinity towards water.

View Article and Find Full Text PDF

The inevitable destructive effects of moisture and temperature are obvious in cellulosic and nanocellulosic substrates. These materials are the main foundations of interdependent industries that produce products such as currency notes or high-quality packaging for sanitary, cosmetics, or ammunition in the defense industry. Therefore, it is essential to develop procedures to eliminate problems arising from humidity and fire to improve the quality of these green and sustainable materials.

View Article and Find Full Text PDF

In the presented research, two trialkoxysilanes were used to investigate their reactivity with microcrystalline cellulose (MCC) applied as a model material. As a continuation of the previous study, the research aimed at evaluation of the durability and potential reversibility of the silane treatment. Two different solvents and a mixture thereof were used for cellulose modification.

View Article and Find Full Text PDF

The subject of this work was to characterize the catalytic course of the linseed oil silylation reaction with vinyltrimethoxysilane (VTMOS), carried out under elevated pressure and temperature conditions, and an explanation of the reasons for rapid gelation of the reaction product. To explain and describe the process, analytical methods were used, i.e.

View Article and Find Full Text PDF

Due to the wider use of nanocellulose in various areas of economic life, better and more optimal methods of obtaining nanocellulose are constantly being sought. Therefore, an attempt was made to evaluate the hybrid cellulose treatment, based on the use of a chemical method combined with an ultrasound of medium frequency. The study employs two different starting materials (Södra Black R cellulose or microcrystalline cellulose), two types of chemical pre-treatments (acid hydrolysis or oxidation), and two sonication durations.

View Article and Find Full Text PDF

Ineffectiveness of the chemicals applied so far for waterlogged wood conservation created the need to develop new more, efficient and reliable agents. As an alternative, a new method with the use of organosilicon compounds differing in chemical composition and molecular weight has been investigated. The results obtained show the potential of organosilicons as consolidants in waterlogged wood conservation able to effectively stabilise wood dimensions upon drying.

View Article and Find Full Text PDF

It can be found that reaction mechanisms and interactions between wood and organosilicone compounds have not been sufficiently explored. The aim of the study was to determine bonds formed between either cellulose or lignin and methyltrimethoxysilane (MTMOS) during a catalytic silanization reaction. Silanization was performed in the presence of two catalysts of a diverse mechanism of functionalization: aluminum acetylacetonate (Al(acac)) and acetic acid (AcOH).

View Article and Find Full Text PDF

Trees of Scots pine (Pinus sylvestris L.) are known for their effective phytoextraction capabilities. The results obtained in this study point to the significant role of substrate composition and chemical characteristics in the phytoextraction potential of this species.

View Article and Find Full Text PDF

The objective of the paper was to estimate the fungicidal value of wood tar extracted as a product of pyrolysis of wood previously treated with either creosote oil or CCB-type salt preservative. The effectiveness of wood treated with one of these two wood tar residuals was compared to the effectiveness of wood treated with virgin creosote oil (type WEI-B) and an untreated control. Wood was impregnated with alcohol solutions of the two extracted preservatives or virgin creosote oil and then subjected to the Coniophora puteana, Poria placenta and Coriolus versicolor fungi.

View Article and Find Full Text PDF