Amino acid-capped gold nanoparticles (AuNPs) are a promising tool for various applications, including therapeutics and diagnostics. Most often, amino acids are used to cap AuNPs synthesized with other reducing agents. However, only a few studies have been dedicated to using α-amino acids as reducing and capping agents in AuNPs synthesis.
View Article and Find Full Text PDFThe results of comparative studies on the fabrication and characterization of GaN/Ag substrates using pulsed laser deposition (PLD) and magnetron sputtering (MS) and their evaluation as potential substrates for surface-enhanced Raman spectroscopy (SERS) are reported. Ag layers of comparable thicknesses were deposited using PLD and MS on nanostructured GaN platforms. All fabricated SERS substrates were examined regarding their optical properties using UV-vis spectroscopy and regarding their morphology using scanning electron microscopy.
View Article and Find Full Text PDFIn this paper, two types of polymer-stabilized periodic structures created by photopolymerization of a nematic liquid crystal confined in a cylindrical structure are presented. Both types of structures were induced by nematic-isotropic phase transition in liquid crystal doped with gold nanoparticles. The first type of structure was created by stabilizing periodic phase separation at the nematic-isotropic phase transition temperature.
View Article and Find Full Text PDFThe research undertaken aimed to develop an efficient Pt-based catalyst for polymer electrolyte membrane fuel cells (PEMFCs) by using a cost-effective and efficient physical method to deposit platinum nanoparticles (PtNPs) on carbon supports directly from the platinum target. The method developed avoids the chemical functionalization of the carbon substrate and the chemical synthesis of PtNPs during catalyst fabrication. Platinum was deposited on carbon particles at room temperature using a pulsed laser deposition (PLD) system equipped with an ArF excimer laser (λ = 193 nm).
View Article and Find Full Text PDFObjective: Titanium dioxide (TiO ) pigments (pure) or with a hydrophobic coating of triethoxycaprylylsilane (TECSi) used in cosmetics. Using different methods, we studied properties of commercially available pure and coated pigment. We determined the elemental composition of pigments that differ in their behaviour in a cosmetic formulation.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
October 2022
Surface-enhanced Raman spectroscopy (SERS) and self-assembled monolayer (SAM) approaches were used to investigate the reactions of organic monoradicals with methanol. An attempt was made to generate monoradicals from thiophenols and phenylmethanethiols substituted with bromine, iodine, and nitro groups by irradiation with UV light. Monolayers of radical precursors were deposited on SERS substrates, which were then immersed in methanol and irradiated for 1 and/or 3, 6, 12 and 24 h in a UV photochemical reactor.
View Article and Find Full Text PDFWe describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol.
View Article and Find Full Text PDFIn this article, we present a versatile gas detector that can operate on an unmanned aerial vehicle (UAV) or unmanned ground vehicle (UGV). The device has six electrochemical modules, which can be selected to measure specific gases, according to the mission requirements. The gas intake is realized by a miniaturized vacuum pump, which provides immediate gas distribution to the sensors and improves a fast response.
View Article and Find Full Text PDFThe reactivities of three isomeric, charged -pyridynes, the 1,2-, 2,3-, and 3,4-didehydropyridinium cations, were examined in the gas phase using Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry. The structures of selected product ions were probed using collision-activated dissociation (CAD) experiments in a linear quadrupole ion trap (LQIT) mass spectrometer. Mechanisms based on quantum chemical calculations are proposed for the formation of all major products.
View Article and Find Full Text PDFTitanium and its alloys is the main group of materials used in prosthetics and implantology. Despite their popularity and many advantages associated with their biocompatibility, these materials have a few significant disadvantages. These include low biologic activity-which reduces the growth of fibrous tissue and allows loosening of the prosthesis-the possibility of metallosis and related inflammation or other allergic reactions, as well as abrasion of the material during operation.
View Article and Find Full Text PDFThe graphene paper microsieves can be applied in the filtration of biological fluids or separation of solid particles from exploitation fluids. To produce graphene paper microsieves for specific applications, good control over fabrication should be achieved. In this study, a laser ablation method using a picosecond laser was applied to fabricate graphene paper microsieves.
View Article and Find Full Text PDFInorganic hollow spheres find a growing number of applications in many fields, including catalysis and solar cells. Hence, a simple fabrication method with a low number of simple steps is desired, which would allow for good control over the structural features and physicochemical properties of titania hollow spheres modified with noble metal nanoparticles. A simple method employing sol-gel coating of nanoparticles with titania followed by controlled silver diffusion was developed and applied for the synthesis of Ag-modified hollow TiO spheres.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) is a very promising analytical technique for the detection and identification of trace amounts of analytes. Among the many substrates used in SERS of great interest are nanostructures fabricated using physical methods, such as semicontinuous metal films obtained via electron beam physical vapor deposition. In these studies, we investigate the influence of morphology of semicontinuous silver films on their SERS properties.
View Article and Find Full Text PDFThe results of studies on the fabrication and characterization of silver nanoisland films (SNIFs) using pulsed laser deposition (PLD) and the evaluation of these films as potential surface-enhanced Raman scattering (SERS) substrates are reported. The SNIFs with thicknesses in a range of 4.7 ± 0.
View Article and Find Full Text PDFIn this paper, we present our recent research results on light propagation in photonic crystal fibers (PCFs) infiltrated with a 6CHBT nematic liquid crystal (LC) doped with 2-nm gold nanoparticles (NPs) with a concentration in the range of 0.01 - 0.5% wt.
View Article and Find Full Text PDFBackground: The accessibility of the remineralizing ions in teeth's environment is essential for their incorporation into caries-affected dentin. Novel bioglass-reinforced materials capable of releasing fluoride, calcium and phosphates may be particularly useful in the tissue remineralization process. A novel restorative material, ACTIVA BioActive-Restorative (Pulpdent Corp.
View Article and Find Full Text PDFTwo previously unreported isomeric biradicals with a 1,4-radical topology, the 1,5-didehydroisoquinolinium cation and the 4,8-didehydroisoquinolinium cation, and an additional, previously reported isomer, the 4,5-didehydroisoquinolinium cation, were studied to examine the importance of the exact location of the radical sites on their reactivities in the gas phase. The experimental results suggest that hydrogen bonding in the transition state enhances the reactivity of the 1,5-didehydroisoquinolinium cation towards tetrahydrofuran but not towards allyl iodide, dimethyl disulfide or tert-butyl isocyanide. The observation of no such enhancement of reactivity towards tetrahydrofuran for the 4,8-didehydroisoquinolinium and 4,5-didehydroisoquinolinium cations supports this hypothesis as these two biradicals are not able to engage in hydrogen bonding in their transition states for hydrogen atom abstraction from tetrahydrofuran.
View Article and Find Full Text PDFThermo- and electro-optical properties of a photonic liquid crystal fiber (PLCF) enhanced by the use of dopants have been investigated. A 6CHBT nematic liquid crystal was doped with four different concentrations of gold nanoparticles (NPs), 0.1, 0.
View Article and Find Full Text PDF2,4,6-Tridehydropyridinium cation () undergoes three consecutive atom or atom group abstractions from reagent molecules in the gas phase. By placing a π-electron-donating hydroxyl group between two radical sites, their reactivity can be quenched by enhancing their through-space coupling via a favorable resonance structure. Indeed, 3-hydroxy-2,4,6-tridehydropyridinium cation () abstracts only one atom or group of atoms from reagents.
View Article and Find Full Text PDFCore-shell nanostructures have found applications in many fields, including surface enhanced spectroscopy, catalysis and solar cells. Titania-coated noble metal nanoparticles, which combine the surface plasmon resonance properties of the core and the photoactivity of the shell, have great potential for these applications. However, the controllable synthesis of such nanostructures remains a challenge due to the high reactivity of titania precursors.
View Article and Find Full Text PDFWe report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image.
View Article and Find Full Text PDF