Publications by authors named "Bartke A"

Article Synopsis
  • Aging leads to a decline in thermoregulation, lowering core body temperature (Tc), which, while being a marker of healthy aging, negatively affects cognitive function in Alzheimer's disease models.
  • The study tested whether increasing Tc through thermotherapy could enhance metabolism and cognitive performance in APP/PS1 mice by exposing them to higher temperatures (30°C) compared to standard conditions (23°C) from 6 to 12 months of age.
  • Results showed improved glucose tolerance and insulin sensitivity in mice exposed to higher temperatures, with varying effects based on sex; while male mice benefited cognitively, female APP/PS1 mice experienced worsened spatial memory, highlighting the need for more research on thermotherapy's potential
View Article and Find Full Text PDF
Article Synopsis
  • * Lifespan studies of male and female AD mouse models show significant differences in survival rates based on sex and genetic background.
  • * The findings highlight the importance of including both sexes in research to better understand and treat Alzheimer's disease.
View Article and Find Full Text PDF
Article Synopsis
  • Lifespans in mammals can differ significantly, with developmental speed being inversely related to lifespan, suggesting early-life interventions (ELIs) could modify aging patterns.
  • This review examines how various postnatal interventions in mice, such as diet changes and chemical treatments, impact development and lifespan, highlighting significant changes in aging processes.
  • Understanding the complexities of ELI research requires careful experimental design and attention to factors like timing and sex differences, which can inform future strategies for promoting healthy aging.
View Article and Find Full Text PDF

Senescent cells accumulate throughout the body and brain contributing to unhealthy aging and Alzheimer's disease (AD). The APP amyloidogenic AD mouse model exhibits increased markers of senescent cells and the senescence-associated secretory phenotype (SASP) in visceral white adipose tissue and the hippocampus before plaque accumulation and cognitive decline. We hypothesized that senolytic intervention would alleviate cellular senescence thereby improving spatial memory in APP mice.

View Article and Find Full Text PDF

Recent studies have demonstrated the remarkable potential of early life intervention strategies at influencing the course of postnatal development, thereby offering exciting possibilities for enhancing longevity and improving overall health. Metformin (MF), an FDA-approved medication for type II diabetes mellitus, has recently gained attention for its promising anti-aging properties, acting as a calorie restriction mimetic, and delaying precocious puberty. Additionally, trodusquemine (MSI-1436), an investigational drug, has been shown to combat obesity and metabolic disorders by inhibiting the enzyme protein tyrosine phosphatase 1b (Ptp1b), consequently reducing hepatic lipogenesis and counteracting insulin and leptin resistance.

View Article and Find Full Text PDF

Purpose: The separation between the inside and outside through the skin was fundamental for the evolution of prevertebrates, which grow through extrapituitary circuits, to vertebrates, which grow through the somatotrophic axis, namely pituitary growth hormone (GH). and circulating IGF1.Individuals with untreated isolated growth hormone (GH) deficiency (IGHD) due to a mutation in the GH-releasing hormone receptor (GHRH) gene, residing in Itabaianinha, Brazil, are vulnerable to skin cancer and have reduced sweating.

View Article and Find Full Text PDF

A thermoregulatory decline occurs with age due to changes in muscle mass, vasoconstriction, and metabolism that lowers core body temperature (Tc). Although lower Tc is a biomarker of successful aging, we have previously shown this worsens cognitive performance in the APP/PS1 mouse model of Alzheimer's disease (AD) [1]. We hypothesized that elevating Tc with thermotherapy would improve metabolism and cognition in APP/PS1 mice.

View Article and Find Full Text PDF

Metformin has attracted increasing interest for its potential benefits in extending healthspan and longevity. This study examined the effects of early-life metformin treatment on the development and metabolism of C57BL/6 J (B6) mice, with metformin administered to juvenile mice from 15 to 56 days of age. Metformin treatment led to decreased body weight in both sexes (P < 0.

View Article and Find Full Text PDF

Senescent cells accumulate throughout the body and brain contributing to unhealthy aging and Alzheimer's disease (AD). The APP amyloidogenic AD mouse model exhibits increased markers of senescent cells and the senescence-associated secretory phenotype (SASP) in visceral white adipose tissue before plaque accumulation and cognitive decline. We hypothesized that senolytic intervention would alleviate cellular senescence thereby improving spatial memory in APP mice.

View Article and Find Full Text PDF

Relationships of growth, metabolism, reproduction, and body size to the biological process of aging and longevity have been studied for decades and various unifying "theories of aging" have been proposed to account for the observed associations. In general, fast development, early sexual maturation leading to early reproductive effort, as well as production of many offspring, have been linked to shorter lifespans. The relationship of adult body size to longevity includes a remarkable contrast between the positive correlation in comparisons between different species and the negative correlation seen in comparisons of individuals within the same species.

View Article and Find Full Text PDF

Introduction: The enhanced β-cell senescence that accompanies insulin resistance and aging contributes to cellular dysfunction and loss of transcriptional identity leading to type 2 diabetes (T2D). While senescence is among the 12 recognized hallmarks of aging, its relation to other hallmarks including altered nutrient sensing (insulin/IGF1 pathway) in β-cells is not fully understood. We previously reported that an increased expression of IGF1R in mouse and human β-cells is a marker of older β-cells; however, its contribution to age-related dysfunction and cellular senescence remains to be determined.

View Article and Find Full Text PDF

Senolytic treatment in aged mice clears senescent cell burden leading to functional improvements. However, less is known regarding the effects of these compounds when administered prior to significant senescent cell accumulation. From 4-13 months of age, C57BL/6 male and female mice received monthly oral dosing of either 100 mg/kg Fisetin or a 5 mg/kg Dasatinib (D) plus 50 mg/kg Quercetin (Q) cocktail.

View Article and Find Full Text PDF

Background: Prior research supports a strong link between Alzheimer's disease (AD) and metabolic dysfunction that involves a multi-directional interaction between glucose, glutamatergic homeostasis, and amyloid pathology. Elevated soluble amyloid-β (Aβ) is an early biomarker for AD-associated cognitive decline that contributes to concurrent glutamatergic and metabolic dyshomeostasis in humans and male transgenic AD mice. Yet, it remains unclear how primary time-sensitive targeting of hippocampal glutamatergic activity may impact glucose regulation in an amyloidogenic mouse model.

View Article and Find Full Text PDF

There is increasing appreciation that sex differences are not limited to reproductive organs or traits related to reproduction and that sex is an important biological variable in most characteristics of a living organism. The biological process of aging and aging-related traits are no exception and exhibit numerous, often major, sex differences. This article explores one aspect of these differences, namely sex differences in the responses to anti-aging interventions.

View Article and Find Full Text PDF

Evidence for hypothalamic regulation of energy homeostasis and thermoregulation in brown adipose tissue (BAT) during aging has been well recognized, yet the central molecular mediators involved in this process are poorly understood. The arcuate hypothalamus, orexigenic agouti-related peptide (AgRP) neurons control nutrient intake, energy homeostasis, and BAT thermogenesis. To determine the roles of growth hormone receptor (GHR) signaling in the AgRP neurons, we used mice with the AgRP-specific GHR deletion (AgRP).

View Article and Find Full Text PDF

Adapting to stress, including cold environmental temperature (eT), is crucial for the survival of mammals, especially small rodents. Long-lived mutant mice have enhanced stress resistance against oxidative and non-oxidative challenges. However, much less is known about the response of those long-lived mice to cold stress.

View Article and Find Full Text PDF

Metabolic dysfunction increases with age and is a contributing factor to Alzheimer's disease (AD) development. We have previously observed impaired insulin sensitivity and glucose homeostasis in the APP/PS1 model of AD. To improve these parameters, we chronically exposed male and female mice to mild hypothermic environmental temperature (eT), which positively modulates metabolism.

View Article and Find Full Text PDF
Somatotropic Axis, Pace of Life and Aging.

Front Endocrinol (Lausanne)

August 2022

Mice with genetic growth hormone (GH) deficiency or GH resistance live much longer than their normal siblings maintained under identical conditions with unlimited access to food. Extended longevity of these mutants is associated with extension of their healthspan (period of life free of disability and disease) and with delayed and/or slower aging. Importantly, GH and GH-related traits have been linked to the regulation of aging and longevity also in mice that have not been genetically altered and in other mammalian species including humans.

View Article and Find Full Text PDF

Aging is a naturally occurring decline of physiological processes and biological pathways that affects both the structural and functional integrity of the body and brain. These physiological changes reduce motor skills, executive function, memory recall, and processing speeds. Aging is also a major risk factor for multiple neurodegenerative disorders including Alzheimer's disease (AD).

View Article and Find Full Text PDF

The exceptional longevity of Ames dwarf (DF) mice can be abrogated by a brief course of growth hormone (GH) injections started at 2 weeks of age. This transient GH exposure also prevents the increase in cellular stress resistance and decline in hypothalamic inflammation characteristic of DF mice. Here, we show that transient early-life GH treatment leads to permanent alteration of pertinent changes in adipocytes, fat-associated macrophages, liver, muscle, and brain that are seen in DF mice.

View Article and Find Full Text PDF

Background: There is inconsistent evidence for the causal role of serum insulin-like growth factor-1 (IGF-1) concentration in the pathogenesis of human age-related diseases such as type 2 diabetes (T2D). Here, we investigated the association between IGF-1 and T2D using (clustered) Mendelian randomization (MR) analyses in the UK Biobank.

Methods: We conducted Cox proportional hazard analyses in 451 232 European-ancestry individuals of the UK Biobank (55.

View Article and Find Full Text PDF

Growth hormone (GH) exerts major actions in cardiac growth and metabolism. Considering the important role of insulin in the heart and the well-established anti-insulin effects of GH, cardiac insulin resistance may play a role in the cardiopathology observed in acromegalic patients. As conditions of prolonged exposure to GH are associated with a concomitant increase of circulating GH, IGF1 and insulin levels, to dissect the direct effects of GH, in this study, we evaluated the activation of insulin signaling in the heart using four different models: (i) transgenic mice overexpressing GH, with chronically elevated GH, IGF1 and insulin circulating levels; (ii) liver IGF1-deficient mice, with chronically elevated GH and insulin but decreased IGF1 circulating levels; (iii) mice treated with GH for a short period of time; (iv) primary culture of rat cardiomyocytes incubated with GH.

View Article and Find Full Text PDF

Dietary protein restriction is increasingly recognized as a unique approach to improve metabolic health, and there is increasing interest in the mechanisms underlying this beneficial effect. Recent work indicates that the hormone FGF21 mediates the metabolic effects of protein restriction in young mice. Here we demonstrate that protein restriction increases lifespan, reduces frailty, lowers body weight and adiposity, improves physical performance, improves glucose tolerance, and alters various metabolic markers within the serum, liver, and adipose tissue of wildtype male mice.

View Article and Find Full Text PDF

It is well documented that the environment of the developing fetus, including availability of nutrients and presence of toxins, can have major impact on adult phenotype, age-related traits and risk of chronic disease. There is also accumulating evidence that postnatal environment can impact adult characteristics related to evolutionary fitness, health, and aging. To determine whether early life hormonal interventions can alter trajectory of aging, we have examined the effects of early life growth hormone (GH) replacement therapy in Prop1 (Ames dwarf) mice which are GH deficient and remarkably long lived.

View Article and Find Full Text PDF