Publications by authors named "Bartek A Glowacki"

Single-step inkjet printing infiltration with doped ceria CeYeO (YDC) and cobalt oxide (CoO) precursor inks was performed in order to modify the properties of the doped ceria interlayer in commercial (50 × 50 × 0.5 mm size) anode-supported SOFCs. The penetration of the inks throughout the LaSrCoFeO porous cathode to the GdCeO (GDC) interlayer was achieved by optimisation of the inks' rheology jetting parameters.

View Article and Find Full Text PDF

Drop-on-demand inkjet printing is a potential enabling technology both for continuous manufacturing of pharmaceuticals and for personalized medicine, but its use is often restricted to low-viscosity solutions and nano-suspensions. In the present study, a robust electromagnetic (valvejet) inkjet technology has been successfully applied to deposit prototype dosage forms from solutions with a wide range of viscosities, and from suspensions with particle sizes exceeding 2 μm. A detailed solid-state study of paracetamol, printed from a solution ink on hydroxypropyl methylcellulose (HPMC), revealed that the morphology of the substrate and its chemical interactions can have a considerable influence on polymorphic selectivity.

View Article and Find Full Text PDF

In this paper, we present an inkjet printing approach suited for the deposition of photocatalytically active, transparent titanium oxide coatings from an aqueous, colloidal suspension. We used a bottom-up approach in which a microwave-assisted hydrothermal treatment of titanium propoxide aqueous solutions in the presence of ethylenediaminetetraacetic acid and triethanolamine was used to create suspensions containing titania nanoparticles. Different inkjet printing set-ups, electromagnetic and piezoelectric driven, were tested to deposit the inks on glass substrates.

View Article and Find Full Text PDF

A series of nanostructured ferroelectric thin films of barium strontium titanate were fabricated using a pulsed laser deposition system with real-time in situ process control. Pulsed laser deposition parameters were controlled during the growth of nanostructured thin films for use in the development of high frequency tunable microwave devices. The thin films were all grown at the same substrate temperature and laser beam energy density, but the chamber oxygen partial pressure (COPP) was varied systematically from 19 mTorr through 1000 Torr.

View Article and Find Full Text PDF