Unlabelled: Baseline assessment of functional stenosis severity has been proposed as a practical alternative to hyperemic indices. However, intact autoregulation mechanisms may affect intracoronary hemodynamics. The aim of this study was to investigate the effect of changes in aortic pressure (Pa) and heart rate (HR) on baseline coronary hemodynamics and functional stenosis assessment.
View Article and Find Full Text PDFDepending on stenosis severity, collateral flow can be a confounding factor in the determination of coronary hyperemic microvascular resistance (HMR). Under certain assumptions, the calculation of HMR can be corrected for collateral flow by incorporating the wedge pressure (P(w)) in the calculation. However, although P(w) > 25 mmHg is indicative of collateral flow, P(w) does in part also reflect myocardial wall stress neglected in the assumptions.
View Article and Find Full Text PDFMed Biol Eng Comput
February 2009
Wave intensity analysis (WIA) is beginning to be applied to the coronary circulation both to better understand coronary physiology and as a diagnostic tool. Separation of wave intensity (WI) into forward and backward traveling components requires knowledge of pulse wave velocity at the point of measurement, which at present cannot accurately be determined in human coronary vessels. This prompted us to study the sensitivity of wave separation to variations in wave speed.
View Article and Find Full Text PDFThe effect of alpha1-receptor blockade with urapidil on coronary blood flow and left ventricular function has been attributed to relief of diffuse coronary vasoconstriction following percutaneous coronary intervention (PCI). We hypothesized that an increase in diastolic time fraction (DTF) contributes to the beneficial action of urapidil. In eleven patients with a 63% (SD 13) diameter stenosis, ECG, aortic pressure (Pa) and distal intracoronary pressure (Pd), and blood flow velocity were recorded at baseline and throughout adenosine-induced hyperemia.
View Article and Find Full Text PDFThe aim of this study was to assess the influence of a second guidewire on the diagnostic accuracy of functional parameters of coronary lesion severity. Sixty-five patients with intermediate coronary lesions underwent myocardial perfusion scintigraphy. Fractional flow reserve (FFR), coronary flow velocity reserve (CFVR), and hyperemic stenosis resistance (HSR) index (HSR = stenosis pressure gradient / velocity) were determined in 77 lesions.
View Article and Find Full Text PDFBackground: Coronary microvascular resistance during maximal hyperemia is generally assumed to be unaffected by percutaneous coronary interventions (PCIs). We assessed a velocity-based index of hyperemic microvascular resistance (h-MR(v)) by using prototypes of a novel, dual-sensor (Doppler velocity and pressure)-equipped guidewire before and after PCI to test this hypothesis.
Methods And Results: Aortic pressure, flow velocity (h-v), and pressure (h-P(d)) distal to 24 coronary lesions were measured simultaneously during maximal hyperemia induced by intracoronary adenosine.
Background: Lack of high-fidelity simultaneous measurements of pressure and flow velocity distal to a coronary artery stenosis has hampered the study of stenosis pressure drop-velocity (DeltaP-v) relationships in patients.
Methods And Results: A novel 0.014-inch dual-sensor (pressure and Doppler velocity) guidewire was used in 15 coronary lesions to obtain per-beat averages of pressure drop and velocity after an intracoronary bolus of adenosine.