Publications by authors named "Bart van Wees"

Spintronics is concerned with replacing charge current with current of spin, the electron's intrinsic angular momentum. In magnetic insulators, spin currents are carried by magnons, the quanta of spin-wave excitations on top of the magnetically ordered state. Magnon spin currents are especially promising for information technology due to their low intrinsic damping, non-reciprocal transport, micrometer wavelengths at microwave frequencies, and strong interactions that enable signal transduction.

View Article and Find Full Text PDF

Significant attention has been drawn to electronic transport in chiral materials coupled to ferromagnets in the chirality-induced spin selectivity (CISS) effect. A large magnetoresistance (MR) is usually observed, which is widely interpreted to originate from spin (dependent) transport. However, there are severe discrepancies between the experimental results and the theoretical interpretations, most notably the apparent failure of the Onsager reciprocity relations in the linear response regime.

View Article and Find Full Text PDF

Confining magnons in cavities can introduce new functionalities to magnonic devices, enabling future magnonic structures to emulate the established photonic and electronic components. As a proof-of-concept, we report magnon confinement in a lithographically defined all-on-chip YIG cavity created between two YIG/Permalloy bilayers. We take advantage of the modified magnetic properties of the covered/uncovered YIG film to define on-chip distinct regions with boundaries capable of confining magnons.

View Article and Find Full Text PDF

Ultracompact spintronic devices greatly benefit from the implementation of two-dimensional materials that provide large spin polarization of charge current together with long-distance transfer of spin information. Here spin-transport measurements in bilayer graphene evidence a strong spin-charge coupling due to a large induced exchange interaction by the proximity of an interlayer antiferromagnet (CrSBr). This results in the direct detection of the spin polarization of conductivity (up to 14%) and a spin-dependent Seebeck effect in the magnetic graphene.

View Article and Find Full Text PDF

Central to spintronics is the interconversion between electronic charge and spin currents, and this can arise from the chirality-induced spin selectivity (CISS) effect. CISS is often studied as magnetoresistance (MR) in two-terminal (2T) electronic nanodevices containing a chiral (molecular) component and a ferromagnet. However, fundamental understanding of when and how this MR can occur is lacking.

View Article and Find Full Text PDF

The discovery of new materials that efficiently transmit spin currents has been important for spintronics and material science. The electric insulator GdGaO (GGG), a standard substrate for growing magnetic films, can be a spin current generator, but has never been considered as a superior conduit for spin currents. Here we report spin current propagation in paramagnetic GGG over several microns.

View Article and Find Full Text PDF

Spintronic devices operating with pure spin currents represent a new paradigm in nanoelectronics, with a higher energy efficiency and lower dissipation as compared to charge currents. This technology, however, will be viable only if the amount of spin current diffusing in a nanochannel can be tuned on demand while guaranteeing electrical compatibility with other device elements, to which it should be integrated in high-density three-dimensional architectures. Here, we address these two crucial milestones and demonstrate that pure spin currents can effectively propagate in metallic nanochannels with a three-dimensional curved geometry.

View Article and Find Full Text PDF

The proximity of a transition-metal dichalcogenide (TMD) to graphene imprints a rich spin texture in graphene and complements its high-quality charge/spin transport by inducing spin-orbit coupling (SOC). Rashba and valley-Zeeman SOCs are the origin of charge-to-spin conversion mechanisms such as the Rashba-Edelstein effect (REE) and spin Hall effect (SHE). In this work, we experimentally demonstrate for the first time charge-to-spin conversion due to the REE in a monolayer WS-graphene van der Waals heterostructure.

View Article and Find Full Text PDF

We report the first observation of a large spin-lifetime anisotropy in bilayer graphene (BLG) fully encapsulated between hexagonal boron nitride. We characterize the out-of-plane (τ_{⊥}) and in-plane (τ_{∥}) spin lifetimes by oblique Hanle spin precession. At 75 K and the charge neutrality point (CNP), we observe a strong anisotropy of τ_{⊥}/τ_{∥}=8±2.

View Article and Find Full Text PDF

In monolayer transition metal dichalcogenides helicity-dependent charge and spin photocurrents can emerge, even without applying any electrical bias, due to circular photogalvanic and photon drag effects. Exploiting such circular photocurrents (CPCs) in devices, however, requires better understanding of their behavior and physical origin. Here, we present symmetry, spectral, and electrical characteristics of CPC from excitonic interband transitions in a MoSe monolayer.

View Article and Find Full Text PDF

We report a novel mechanism for the electrical injection and detection of out-of-plane spin accumulation via the anomalous spin Hall effect (ASHE), where the direction of the spin accumulation can be controlled by manipulating the magnetization of the ferromagnet. This mechanism is distinct from the spin Hall effect (SHE), where the spin accumulation is created along a fixed direction parallel to an interface. We demonstrate this unique property of the ASHE in nanowires made of permalloy (Py) to inject and detect out-of-plane spin accumulation in a magnetic insulator, yttrium iron garnet (YIG).

View Article and Find Full Text PDF

Van der Waals heterostructures have become a paradigm for designing new materials and devices in which specific functionalities can be tailored by combining the properties of the individual 2D layers. A single layer of transition-metal dichalcogenide (TMD) is an excellent complement to graphene (Gr) because the high quality of charge and spin transport in Gr is enriched with the large spin-orbit coupling of the TMD via the proximity effect. The controllable spin-valley coupling makes these heterostructures particularly attractive for spintronic and opto-valleytronic applications.

View Article and Find Full Text PDF

Hybrid phototransistors of graphene and the organic semiconductor poly(3-hexylthiophene-2,5-diyl) (P3HT) are presented. Two types of phototransistors are demonstrated with a charge carrier transit time that differs by more than 6 orders of magnitude. High transit time devices are fabricated using a photoresist-free recipe to create large-area graphene transistors made out of graphene grown by chemical vapor deposition.

View Article and Find Full Text PDF

We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries.

View Article and Find Full Text PDF

We report on the light-induced switching of conductance of a new generation of diarylethene switches embedded in an insulating matrix of dodecanethiol on Au(111), by using scanning tunneling microscopy (STM). The diarylethene switches we synthesize and study are modified diarylethenes where the thiophene unit at one side of the molecular backbone introduces an intrinsic asymmetry into the switch, which is expected to influence its photo-conductance properties. We show that reversible conversion between two distinguishable conductance states can be controlled via photoisomerisation of the switches by using alternative irradiation with UV (λ = 313 nm) or visible (λ > 420 nm) light.

View Article and Find Full Text PDF

Spintronics is about the coupled electron spin and charge transport in condensed-matter structures and devices. The recently invigorated field of spin caloritronics focuses on the interaction of spins with heat currents, motivated by newly discovered physical effects and strategies to improve existing thermoelectric devices. Here we give an overview of our understanding and the experimental state-of-the-art concerning the coupling of spin, charge and heat currents in magnetic thin films and nanostructures.

View Article and Find Full Text PDF

The effects of hydrogenation on the topography and electronic properties of graphene and graphite surfaces are studied by scanning tunneling microscopy and spectroscopy. The surfaces are chemically modified using an Ar/H(2) plasma. By analyzing thousands of scanning tunneling spectroscopy measurements it is determined that the hydrogen chemisorption on the surface of graphite/graphene opens on average an energy bandgap of 0.

View Article and Find Full Text PDF

We developed an easy, upscalable process to prepare lateral spin-valve devices on epitaxially grown monolayer graphene on SiC(0001) and perform nonlocal spin transport measurements. We observe the longest spin relaxation times τ(S) in monolayer graphene, while the spin diffusion coefficient D(S) is strongly reduced compared to typical results on exfoliated graphene. The increase of τ(S) is probably related to the changed substrate, while the cause for the small value of D(S) remains an open question.

View Article and Find Full Text PDF

By mechanical exfoliation, it is possible to deposit atomically thin mica flakes down to single-monolayer thickness on SiO2/Si wafers. The optical contrast of these mica flakes on top of a SiO2/Si substrate depends on their thickness, the illumination wavelength, and the SiO2 substrate thickness, and can be quantitatively accounted for by a Fresnel-law-based model. The preparation of atomically thin insulating crystalline sheets will enable the fabrication of ultrathin, defect-free insulating substrates, dielectric barriers, or planar electron-tunneling junctions.

View Article and Find Full Text PDF

Two types of graphene-based hybrid materials, graphene-TPP (TPP=tetraphenylporphyrin) and graphene-PdTPP (PdTPP=palladium tetraphenylporphyrin), were prepared directly from pristine graphene through one-pot cycloaddition reactions. The hybrid materials were characterized by thermogravimetric analysis (TGA), by TEM, by UV/Vis, FTIR, Raman, and luminescence spectroscopy, and by fluorescence/phosphorescence lifetime measurements. The presence of the covalent linkages between graphene and porphyrin was confirmed by FTIR and Raman spectroscopy and further supported by control experiments.

View Article and Find Full Text PDF

A dispersion of graphene in ethanol was achieved using solvent exchange from N-methyl-2-pyrrolidone (NMP) that enables broader application of dispersed graphene.

View Article and Find Full Text PDF

Understanding the formation of crystalline polymorphs is of importance for various applications of materials science. Polymorphism of Schiff base derivatives has recently attracted considerable attention because of its influence on photochromic and thermochromic properties of their 3D crystals. The present investigation extends the study of Schiff base polymorphism to the molecular level by using a combination of scanning tunneling microscopy at the liquid/solid interface and molecular modeling.

View Article and Find Full Text PDF