Publications by authors named "Bart W Faber"

Apical Membrane Antigen 1 (AMA1) plays a vital role in the invasion of the host erythrocyte by the malaria parasite, . It is thus an important target for vaccine and anti-malaria therapeutic strategies that block the invasion process. AMA1, present on the surface of the parasite, interacts with RON2, a component of the parasite's rhoptry neck (RON) protein complex, which is transferred to the erythrocyte membrane during invasion.

View Article and Find Full Text PDF

Introduction: Diversity in malarial antigens is an immune evasion mechanism that gives malaria parasites an edge over the host. Immune responses against one variant of a polymorphic antigen are usually not fully effective against other variants due to altered epitopes. This study aimed to evaluate diversity in the Plasmodium falciparum antigens apical membrane antigen 1 (PfAMA1) and circumsporozoite protein (PfCSP) from circulating parasites in a malaria-endemic community in southern Ghana and to determine the effects of polymorphisms on antibody response specificity.

View Article and Find Full Text PDF

Plasmodium vivax malaria is increasingly recognized as a major global health problem and the socio-economic impact of P.vivax-induced burden is huge. Vaccine development against P.

View Article and Find Full Text PDF

Vaccine development for Plasmodium vivax, an important human relapsing malaria, is lagging behind. In the case of the most deadly human malaria P. falciparum, unprecedented high levels of protection have been obtained by immunization with live sporozoites under accompanying chemoprophylaxis, which prevents the onset of blood-stage malaria.

View Article and Find Full Text PDF

Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a candidate malaria vaccine antigen expressed on merozoites and sporozoites. PfAMA1's polymorphic nature impacts vaccine-induced protection. To address polymorphism, three Diversity Covering (DiCo) protein sequences were designed and tested in a staggered phase Ia/b trial.

View Article and Find Full Text PDF

Dengue fever is one of the most wide-spread vector-borne diseases in the world. Although dengue-associated mortality is low, morbidity and economic impact are high. Current licensed vaccines are limited and mediate only partial protection, thus a cost-effective vaccine with improved efficacy is strongly needed.

View Article and Find Full Text PDF

Background: In this study, seven adjuvants were compared for use with Plasmodium falciparum DiCo-Apical Membrane Antigen 1 (Pf-DiCo-AMA1), with the aim to identify an ideal adjuvant which yields high antibody titres and potentially broadens the responses in clinical trials. The following adjuvant formulations were evaluated: SE, SE-GLA, Liposomes, Liposomes-GLA, CoVaccine HT™, ImSaVac-P and ImSaVac-P o/w. The study was performed in rabbits, which were immunized with FVO-AMA1 in combination with one of the seven adjuvants.

View Article and Find Full Text PDF

Relapses of dormant liver hypnozoites compromise malaria eradication efforts. New radical cure drugs are urgently needed, yet the vast gap in knowledge of hypnozoite biology impedes drug discovery. We previously unraveled the transcriptome of 6 to 7 day-old liver stages, highlighting pathways associated with hypnozoite dormancy (Voorberg-van der Wel et al.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune disorder manifested via chronic inflammation, demyelination, and neurodegeneration inside the central nervous system. The progressive phase of MS is characterized by neurodegeneration, but unlike classical neurodegenerative diseases, amyloid-like aggregation of self-proteins has not been documented. There is evidence that citrullination protects an immunodominant peptide of human myelin oligodendrocyte glycoprotein (MOG) against destructive processing in Epstein-Barr virus-infected B-lymphocytes (EBV-BLCs) in marmosets and causes exacerbation of ongoing MS-like encephalopathies in mice.

View Article and Find Full Text PDF

Polymorphism in vaccine antigens poses major challenges to vaccinologists. The Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) poses such a challenge. We found that immunization with a mixture of three variants yielded functional antibody levels to all variants comparable to levels induced by monovalent immunization.

View Article and Find Full Text PDF

liver hypnozoites, which cause disease relapse, are widely considered to be the last barrier towards malaria eradication. The biology of this quiescent form of the parasite is poorly understood which hinders drug discovery. We report a comparative transcriptomic dataset of replicating liver schizonts and dormant hypnozoites of the relapsing parasite .

View Article and Find Full Text PDF

Introduction: Plasmodium falciparum induced antibodies are key components of anti-malarial immunity in malaria endemic areas, but their antigen targets can be polymorphic. Induction of a high proportion of strain-specific antibodies will limit the recognition of a broad diversity of parasite strains by these responses. There are indications that circulating parasite diversity varies with malaria transmission intensity, and this may affect the specificity of elicited anti-malarial antibodies.

View Article and Find Full Text PDF

Malaria, a disease endemic in many tropical and subtropical regions, is caused by infection of the erythrocyte by the apicomplexan parasite Plasmodium. Host-cell invasion is a complex process but two Plasmodium proteins, Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck protein complex (RON), play a key role. AMA1, present on the surface of the parasite, binds tightly to the RON2 component of the RON protein complex, which is inserted into the erythrocyte membrane during invasion.

View Article and Find Full Text PDF

The absence of pathological hallmarks of progressive multiple sclerosis (MS) in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE) hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (). The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34-56 from human myelin oligodendrocyte glycoprotein (MOG) formulated with a mineral oil [incomplete Freund's adjuvant (IFA)].

View Article and Find Full Text PDF

Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a leading asexual blood stage vaccine candidate for malaria. In preparation for clinical trials, three Diversity Covering (DiCo) PfAMA1 ectodomain proteins, designed to overcome the intrinsic polymorphism that is present in PfAMA1, were produced under Good Manufacturing Practice (GMP) in Pichia pastoris. Using identical methodology, the 3 strains were cultivated in 70-L scale fed-batch fermentations and PfAMA1-DiCos were purified by two chromatography steps, an ultrafiltration/diafiltration procedure and size exclusion chromatography, resulting in highly pure (>95%) PfAMA1-DiCo1, PfAMA1 DiCo2 and PfAMA1 DiCo3, with final yields of 1.

View Article and Find Full Text PDF

Background: The safety and immunogenicity of PfAMA1, adjuvanted with Alhydrogel(®) was assessed in malaria-experienced Malian adults. The malaria vaccine, PfAMA1-FVO [25-545] is a recombinant protein Pichia pastoris-expressed AMA-1 from Plasmodium falciparum FVO clone adsorbed to Alhydrogel(®), the control vaccine was tetanus toxoid produced from formaldehyde detoxified and purified tetanus toxin.

Methods: A double blind randomized controlled phase 1 study enrolled and followed 40 healthy adults aged 18-55 years in Bandiagara, Mali, West Africa, a rural setting with intense seasonal transmission of P.

View Article and Find Full Text PDF

EBV is the major infectious environmental risk factor for multiple sclerosis (MS), but the underlying mechanisms remain obscure. Patient studies do not allow manipulation in vivo. We used the experimental autoimmune encephalomyelitis (EAE) models in the common marmoset and rhesus monkey to model the association of EBV and MS.

View Article and Find Full Text PDF

The malaria parasite Plasmodium knowlesi, previously associated only with infection of macaques, is now known to infect humans as well and has become a significant public health problem in Southeast Asia. This species should therefore be targeted in vaccine and therapeutic strategies against human malaria. Apical Membrane Antigen 1 (AMA1), which plays a role in Plasmodium merozoite invasion of the erythrocyte, is currently being pursued in human vaccine trials against P.

View Article and Find Full Text PDF

Infection with Plasmodium knowlesi, a zoonotic primate malaria, is a growing human health problem in Southeast Asia. P. knowlesi is being used in malaria vaccine studies, and a number of proteins are being considered as candidate malaria vaccine antigens, including the Apical Membrane Antigen 1 (AMA1).

View Article and Find Full Text PDF

To overcome polymorphism in the malaria vaccine candidate Plasmodium falciparum apical membrane antigen 1 (PfAMA1), fusion protein chimeras comprised of three diversity-covering (DiCo) PfAMA1 molecules (D1, D2, and D3) and two allelic variants of the C-terminal 19-kDa region of merozoite surface protein 1 (MSP119) (variants M1 and M2) were generated. A mixture of fusion proteins (D1M1/D2M2D3) and the D1M1D2M2D3 fusion were compared to a single-unit mixture (D1/D2/D3/M1) in an immunological study in groups of rabbits. Following immunization, titers of antibodies (Abs) against four naturally occurring PfAMA1 alleles were high for all groups, as were growth inhibition assay (GIA) levels against two antigenically distinct laboratory parasite strains.

View Article and Find Full Text PDF

Unlabelled: Plasmodium falciparum: apical membrane antigen 1 (AMA1) is a candidate malaria vaccine antigen expressed on merozoites and sporozoites. The polymorphic nature of AMA1 may compromise vaccine induced protection. The humoral response induced by two dosages (10 and 50 µg) of a single allele AMA1 antigen (FVO) formulated with Alhydrogel, Montanide ISA 720 or AS02 was investigated in 47 malaria-naïve adult volunteers.

View Article and Find Full Text PDF

Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ) between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, which is targeted to the host cell membrane during invasion.

View Article and Find Full Text PDF

Background: Establishing antibody correlates of protection against malaria in human field studies and clinical trials requires, amongst others, an accurate estimation of antibody levels. For polymorphic antigens such as apical membrane antigen 1 (AMA1), this may be confounded by the occurrence of a large number of allelic variants in nature.

Methods: To test this hypothesis, plasma antibody levels in an age-stratified cohort of naturally exposed children from a malaria-endemic area in Southern Ghana were determined by indirect ELISA.

View Article and Find Full Text PDF

Merozoite surface protein 1 (MSP1) is a target for malaria vaccine development. Antibodies to the 19-kDa carboxy-terminal region referred to as MSP1(19) inhibit erythrocyte invasion and parasite growth, with some MSP1-specific antibodies shown to inhibit the proteolytic processing of MSP1 that occurs at invasion. We investigated a series of antibodies purified from rabbits immunized with MSP1(19) and AMA1 recombinant proteins for their ability to inhibit parasite growth, initially looking at MSP1 processing.

View Article and Find Full Text PDF

Background: Increasing the breadth of the functional antibody response through immunization with Plasmodium falciparum apical membrane antigen 1 (PfAMA1) multi-allele vaccine formulations has been demonstrated in several rodent and rabbit studies. This study assesses the safety and immunogenicity of three PfAMA1 Diversity-Covering (DiCo) vaccine candidates formulated as an equimolar mixture (DiCo mix) in CoVaccine HT™ or Montanide ISA 51, as well as that of a PfAMA1-MSP1₁₉ fusion protein formulated in Montanide ISA 51.

Methods: Vaccine safety in rhesus macaques was monitored by animal behaviour observation and assessment of organ and systemic functions through clinical chemistry and haematology measurements.

View Article and Find Full Text PDF