Publications by authors named "Bart Steiner"

Background: Bruton's tyrosine kinase (BTK) is a key component of the B-cell receptor (BCR) pathway and a clinically validated target for small molecule inhibitors such as ibrutinib in the treatment of B-cell malignancies. Tirabrutinib (GS-4059/ONO-4059) is a selective, once daily, oral BTK inhibitor with clinical activity against many relapsed/refractory B-cell malignancies.

Methods: Covalent binding of tirabrutinib to BTK Cys-481 was assessed by LC-MSMS analysis of BTK using compound as a variable modification search parameter.

View Article and Find Full Text PDF

Aberrant signaling of phosphoinositide 3-kinase δ (PI3Kδ) has been implicated in numerous pathologies including hematological malignancies and rheumatoid arthritis. Described in this manuscript are the discovery, optimization, and in vivo evaluation of a novel series of pyridine-containing PI3Kδ inhibitors. This work led to the discovery of 35, a highly selective inhibitor of PI3Kδ which displays an excellent pharmacokinetic profile and is efficacious in a rodent model of rheumatoid arthritis.

View Article and Find Full Text PDF

There remains a significant need for development of effective small molecules that can inhibit cytokine-mediated inflammation. Phosphoinositide 3 kinase (PI3K) is a direct upstream activator of AKT, and plays a critical role in multiple cell signaling pathways, cell cycle progression, and cell growth, and PI3K inhibitors have been approved or are in clinical development. We examined novel PI3Kdelta inhibitors, which are highly selective for the p110delta isoform of in CD3/CD28 stimulated T-cell cytokine production.

View Article and Find Full Text PDF

Inhibition of phosphoinositide 3-kinase δ (PI3Kδ) is an appealing target for several hematological malignancies and inflammatory diseases. Herein, we describe the discovery and optimization of a series of propeller shaped PI3Kδ inhibitors comprising a novel triaminopyrimidine hinge binder. Combinations of electronic and structural strategies were employed to mitigate aldehyde oxidase mediated metabolism.

View Article and Find Full Text PDF

Background: Phosphatidylinositol 3-kinase p110δ isoform (PI3K p110δ) activity is essential for mast cell activation, suggesting that inhibition of PI3K p110δ might be useful in treating allergic diseases.

Objective: We sought to determine the effect of the PI3K p110δ-selective inhibitor idelalisib on allergic responses.

Methods: This phase 1 randomized, double-blind, placebo-controlled, 2-period crossover study was conducted with the Vienna Challenge Chamber.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a human chronic inflammatory disease generated and maintained throughout life by autoreactive T and B cells. Class I phosphoinositide 3-kinases (PI3K) are heterodimers composed of a regulatory and a catalytic subunit that catalyze phosphoinositide-3,4,5-P3 formation and regulate cell survival, migration, and division. Activity of the PI3Kδ isoform is enhanced in human SLE patient PBLs.

View Article and Find Full Text PDF

Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts.

View Article and Find Full Text PDF

Phosphatidylinositol-3-kinase p110δ serves as a central integration point for signaling from cell surface receptors known to promote malignant B-cell proliferation and survival. This provides a rationale for the development of small molecule inhibitors that selectively target p110δ as a treatment approach for patients with B-cell malignancies. We thus identified 5-fluoro-3-phenyl-2-[(S)-1-(9H-purin-6-ylamino)-propyl]-3H-quinazolin-4-one (CAL-101), a highly selective and potent p110δ small molecule inhibitor (half-maximal effective concentration [EC(50)] = 8nM).

View Article and Find Full Text PDF