Acta Crystallogr F Struct Biol Commun
January 2025
Plasmodium vivax, a significant contributor to global malaria cases, poses an escalating health burden on a substantial portion of the world's population. The increasing spread of P. vivax because of climate change underscores the development of new and rational drug-discovery approaches.
View Article and Find Full Text PDFGriselimycin, a cyclic depsidecapeptide produced by Streptomyces griseus, is a promising lead inhibitor of the sliding clamp component of bacterial DNA polymerases (β-subunit of Escherichia coli DNA pol III). It was previously shown to inhibit the Mycobacterium tuberculosis β-clamp with remarkably high affinity and selectivity - the peptide lacks any interaction with the human sliding clamp. Here, we used a structural genomics approach to address the prospect of broader-spectrum inhibition, in particular of β-clamps from Gram-negative bacterial targets.
View Article and Find Full Text PDFNontuberculous mycobacteria (NTM) are emerging human pathogens linked to severe pulmonary diseases. Current treatments involve the prolonged use of multiple drugs and are often ineffective. Bacterial dihydrofolate reductase (DHFR) is a key enzyme targeted by antibiotics in Gram-negative bacterial infections.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
October 2024
-myristoyltransferase (NMT) is a promising antimalarial drug target. Despite biochemical similarities between and human NMTs, our recent research demonstrated that high selectivity is achievable. Herein, we report NMT-inhibiting compounds aimed at identifying novel mechanisms of selectivity.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
April 2024
The rise in antimicrobial resistance is a global health crisis and necessitates the development of novel strategies to treat infections. For example, in 2022 tuberculosis (TB) was the second leading infectious killer after COVID-19, with multi-drug-resistant strains of TB having an ∼40% fatality rate. Targeting essential biosynthetic pathways in pathogens has proven to be successful for the development of novel antimicrobial treatments.
View Article and Find Full Text PDFThe transmembrane serine protease 2 (TMPRSS2) activates the outer structural proteins of a number of respiratory viruses including influenza A virus (IAV), parainfluenza viruses, and various coronaviruses for membrane fusion. Previous studies showed that TMPRSS2 interacts with the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), a cell surface protein that serves as an entry receptor for some coronaviruses. Here, by using protease activity assays, we determine that ACE2 increases the enzymatic activity of TMPRSS2 in a non-catalytic manner.
View Article and Find Full Text PDFMalaria remains a significant public health challenge, with being the species responsible for the most prevalent form of the disease. Given the limited therapeutic options available, the search for new antimalarials against is urgent. This study aims to identify new inhibitors for -myristoyltransferase (PvNMT), an essential drug target against malaria.
View Article and Find Full Text PDFControlling malaria requires new drugs against . The cGMP-dependent protein kinase (PfPKG) is a validated target whose inhibitors could block multiple steps of the parasite's life cycle. We defined the structure-activity relationship (SAR) of a pyrrole series for PfPKG inhibition.
View Article and Find Full Text PDFInfections with the pathogenic free-living amoebae can lead to life-threatening illnesses including catastrophic primary amebic meningoencephalitis (PAM). Efficacious treatment options for these infections are lacking and the mortality rate remains >95% in the US. Glycolysis is very important for the infectious trophozoite lifecycle stage and inhibitors of glucose metabolism have been found to be toxic to the pathogen.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
October 2023
Drugs targeting multiple stages of the Plasmodium vivax life cycle are needed to reduce the health and economic burdens caused by malaria worldwide. N-myristoyltransferase (NMT) is an essential eukaryotic enzyme and a validated drug target for combating malaria. However, previous PvNMT inhibitors have failed due to their low selectivity over human NMTs.
View Article and Find Full Text PDFSARS-CoV-2 is the agent responsible for acute respiratory disease COVID-19 and the global pandemic initiated in early 2020. While the record-breaking development of vaccines has assisted the control of COVID-19, there is still a pressing global demand for antiviral drugs to halt the destructive impact of this disease. Repurposing clinically approved drugs provides an opportunity to expediate SARS-CoV-2 treatments into the clinic.
View Article and Find Full Text PDFE-cadherin adhesion is regulated at the cell surface, a process that can be replicated by activating antibodies. We use cryo-electron microscopy (EM) and X-ray crystallography to examine functional states of the cadherin adhesive dimer. This dimer is mediated by N-terminal beta strand-swapping involving Trp2, and forms via a different transient X-dimer intermediate.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2022
E-cadherin (Ecad) is an essential cell-cell adhesion protein with tumor suppression properties. The adhesive state of Ecad can be modified by the monoclonal antibody 19A11, which has potential applications in reducing cancer metastasis. Using X-ray crystallography, we determine the structure of 19A11 Fab bound to Ecad and show that the antibody binds to the first extracellular domain of Ecad near its primary adhesive motif: the strand-swap dimer interface.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
March 2022
The name of one of the authors in Beard et al. [(2022), Acta Cryst. F78, 59-65] is corrected.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
March 2022
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections globally and is one of the most commonly reported infections in the United States. There is a need to develop new therapeutics due to drug resistance and the failure of current treatments to clear persistent infections. Structures of potential C.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
February 2022
Giardiasis is the most prevalent diarrheal disease globally and affects humans and animals. It is a significant problem in developing countries, the number one cause of travelers' diarrhea and affects children and immunocompromised individuals, especially HIV-infected individuals. Giardiasis is treated with antibiotics (tinidazole and metronidazole) that are also used for other infections such as trichomoniasis.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
January 2022
Members of the bacterial genus Brucella cause brucellosis, a zoonotic disease that affects both livestock and wildlife. Brucella are category B infectious agents that can be aerosolized for biological warfare. As part of the structural genomics studies at the Seattle Structural Genomics Center for Infectious Disease (SSGCID), FolM alternative dihydrofolate reductases 1 from Brucella suis and Brucella canis were produced and their structures are reported.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
January 2022
Paraburkholderia xenovorans degrades organic wastes, including polychlorinated biphenyls. The atomic structure of a putative dehydrogenase/reductase (SDR) from P. xenovorans (PxSDR) was determined in space group P2 at a resolution of 1.
View Article and Find Full Text PDF