Publications by authors named "Bart O Roep"

Background/objectives: Dendritic cells (DCs) are master regulators of the adaptive immune response. Inflammatory DCs (inflamDCs) can prime inflammatory T cells in, for instance, cancer and infection. In contrast, tolerogenic DCs (tolDCs) can suppress the immune system through a plethora of regulatory mechanisms in the context of autoimmunity.

View Article and Find Full Text PDF

Disease-causing variants in key immune homeostasis genes can lead to monogenic autoimmune diabetes. Some individuals carrying disease-causing variants do not develop autoimmune diabetes, even though they develop other autoimmune disease. We aimed to determine whether type 1 diabetes polygenic risk contributes to phenotypic presentation in monogenic autoimmune diabetes.

View Article and Find Full Text PDF

Aims/hypothesis: Use of genetic risk scores (GRS) may help to distinguish between type 1 diabetes and type 2 diabetes, but less is known about whether GRS are associated with disease severity or progression after diagnosis. Therefore, we tested whether GRS are associated with residual beta cell function and glycaemic control in individuals with type 1 diabetes.

Methods: Immunochip arrays and TOPMed were used to genotype a cross-sectional cohort (n=479, age 41.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3).

View Article and Find Full Text PDF

Aims/hypothesis: The prevalence and severity of metabolic dysfunction-associated steatotic liver disease (MASLD) in type 1 diabetes remain unclear. Therefore, we investigated the prevalence and severity of MASLD in type 1 diabetes and assessed which clinical features are most important in predicting MASLD severity.

Methods: A total of 453 individuals with type 1 diabetes (41.

View Article and Find Full Text PDF

Introduction: The autoimmune response in type 1 diabetes (T1D), in which the beta cells expressing aberrant or modified proteins are killed, resembles an effective antitumor response. Defective ribosomal protein products in tumors are targets of the anti-tumor immune response that is unleashed by immune checkpoint inhibitor (ICI) treatment in cancer patients. We recently described a defective ribosomal product of the insulin gene (INS-DRiP) that is expressed in stressed beta cells and targeted by diabetogenic T cells.

View Article and Find Full Text PDF

More than 30% of patients with type 1 diabetes develop diabetic kidney disease (DKD), which significantly increases mortality risk. The Diabetes Control and Complications Trial (DCCT) and follow-up study, Epidemiology of Diabetes Interventions and Complications (EDIC), established that glycemic control measured by HbA1c predicts DKD risk. However, the continued high incidence of DKD reinforces the urgent need for additional biomarkers to supplement HbA1c.

View Article and Find Full Text PDF

Aims/hypothesis: The inflammatory milieu characteristic of insulitis affects translation fidelity and generates defective ribosomal products (DRiPs) that participate in autoimmune beta cell destruction in type 1 diabetes. Here, we studied the role of early innate cytokines (IFNα) and late immune adaptive events (IFNɣ) in insulin DRiP-derived peptide presentation to diabetogenic CD8+ T cells.

Methods: Single-cell transcriptomics of human pancreatic islets was used to study the composition of the (immuno)proteasome.

View Article and Find Full Text PDF

Objective: Little is known about the influence of residual islet function on glycemic control in type 1 diabetes (T1D). We investigated the associations between residual β-cell function and metrics of continuous glucose monitoring (CGM) in individuals with T1D.

Research Design And Methods: In this cross-sectional cohort comprising 489 individuals (64% female, age 41.

View Article and Find Full Text PDF

Aims/hypothesis: Transcriptome analyses revealed insulin-gene-derived transcripts in non-beta endocrine islet cells. We studied alternative splicing of human INS mRNA in pancreatic islets.

Methods: Alternative splicing of insulin pre-mRNA was determined by PCR analysis performed on human islet RNA and single-cell RNA-seq analysis.

View Article and Find Full Text PDF

Thrombospondin-1 (TSP1) is a secreted protein minimally expressed in health but increased in disease and age. TSP1 binds to the cell membrane receptor CD47, which itself engages signal regulatory protein α (SIRPα), and the latter creates a checkpoint for immune activation. Individuals with cancer administered checkpoint-blocking molecules developed insulin-dependent diabetes.

View Article and Find Full Text PDF

Introduction: Progression to type 1 diabetes has emerged as a complex process with metabolic alterations proposed to be a significant driver of disease. Monitoring products of altered metabolism is a promising tool for determining the risk of type 1 diabetes progression and to supplement existing predictive biomarkers. Methylglyoxal (MG) is a reactive product produced from protein, lipid, and sugar metabolism, providing a more comprehensive measure of metabolic changes compared to hyperglycemia alone.

View Article and Find Full Text PDF

The current standard of care for type 1 diabetes patients is limited to treatment of the symptoms of the disease, insulin insufficiency and its complications, not its cause. Given the autoimmune nature of type 1 diabetes, immunology is critical to understand the mechanism of disease progression, patient and disease heterogeneity and therapeutic action. Immune monitoring offers the key to all this essential knowledge and is therefore indispensable, despite the challenges and costs associated.

View Article and Find Full Text PDF

Type 1 diabetes patients carrying a 'protective' insulin gene (INS) variant present a disease endotype with reduced insulin antibody titers, preserved beta cell function and improved glycemic control. We tested whether this protective INS variant associated with lowered risk for development of proliferative diabetic retinopathy (PDR) and diabetic kidney disease (DKD) as long-term diabetic complications. Insulin gene polymorphisms were evaluated in 1,363 type 1 diabetes patients participating in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study that compared intensive versus conventional insulin therapy in relation with development of PDR and DKD with a follow-up of over two decades.

View Article and Find Full Text PDF

Introduction: Restoration of immune tolerance may halt progression of autoimmune diseases. Tolerogenic dendritic cells (tolDC) inhibit antigen-specific proinflammatory T-cells, generate antigen-specific regulatory T-cells and promote IL-10 production , providing an appealing immunotherapy to intervene in autoimmune disease progression.

Methods: A placebo-controlled, dose escalation phase 1 clinical trial in nine adult patients with long-standing type 1 diabetes (T1D) demonstrated the safety and feasibility of two (prime-boost) vaccinations with tolDC pulsed with a proinsulin peptide.

View Article and Find Full Text PDF

Acute graft-versus-host disease (aGVHD) is an immune cell‒driven, potentially lethal complication of allogeneic hematopoietic stem cell transplantation affecting diverse organs, including the skin, liver, and gastrointestinal (GI) tract. We applied mass cytometry (CyTOF) to dissect circulating myeloid and lymphoid cells in children with severe (grade III-IV) aGVHD treated with immune suppressive drugs alone (first-line therapy) or in combination with mesenchymal stromal cells (MSCs; second-line therapy). These results were compared with CyTOF data generated in children who underwent transplantation with no aGVHD or age-matched healthy control participants.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) remains a devastating disease that requires much effort to control. Life-long daily insulin injections or an insulin pump are required to avoid severe complications. With many factors contributing to disease onset, T1D is a complex disease to cure.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease that develops in the interplay between genetic and environmental factors. A majority of individuals who develop T1D have a HLA make up, that accounts for 50% of the genetic risk of disease. Besides these HLA haplotypes and the insulin region that importantly contribute to the heritable component, genome-wide association studies have identified many polymorphisms in over 60 non-HLA gene regions that also contribute to T1D susceptibility.

View Article and Find Full Text PDF

We investigated the effect of chronic marijuana use, defined as 4 times weekly for more than 3 years, on human pancreatic islets. Pancreata from deceased donors who chronically used marijuana were compared to those from age, sex and ethnicity matched non-users. The islets from marijuana-users displayed reduced insulin secretion as compared to islets from non-users upon stimulation with high glucose (AUC, 3.

View Article and Find Full Text PDF

Cytotoxic CD8 T lymphocytes play a central role in the tissue destruction of many autoimmune disorders. In type 1 diabetes (T1D), insulin and its precursor preproinsulin are major self-antigens targeted by T cells. We comprehensively examined preproinsulin specificity of CD8 T cells obtained from pancreatic islets of organ donors with and without T1D and identified epitopes throughout the entire preproinsulin protein and defective ribosomal products derived from preproinsulin messenger RNA.

View Article and Find Full Text PDF

Syntaxin 4 (STX4), a plasma membrane-localized SNARE protein, regulates human islet β-cell insulin secretion and preservation of β-cell mass. We found that human type 1 diabetes (T1D) and NOD mouse islets show reduced β-cell STX4 expression, consistent with decreased STX4 expression, as a potential driver of T1D phenotypes. To test this hypothesis, we generated inducible β-cell-specific STX4-expressing NOD mice (NOD-iβSTX4).

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease characterized by autoreactive T cell-mediated destruction of the insulin-producing pancreatic β-cells. Increasing evidence suggest that the β-cells themselves contribute to their own destruction by generating neoantigens through the production of aberrant or modified proteins that escape central tolerance. We recently demonstrated that ribosomal infidelity amplified by stress could lead to the generation of neoantigens in human β-cells, emphasizing the participation of nonconventional translation events in autoimmunity, as occurring in cancer or virus-infected tissues.

View Article and Find Full Text PDF

Recent advances in cancer immunotherapy have completely revolutionized cancer treatment strategies. Nonetheless, the increasing incidence of immune-related adverse events (irAEs) is now limiting the overall benefits of these treatments. irAEs are well-recognized side effects of some of the most effective cancer immunotherapy agents, including antibody blockade of the cytotoxic T-lymphocyte-associated protein 4 and programmed death protein 1/programmed-death ligand 1 pathways.

View Article and Find Full Text PDF