Publications by authors named "Bart L van de Bank"

Phosphorus magnetic resonance spectroscopy (P MRS) has been employed before to assess phosphocreatine (PCr) and other high-energy phosphates in the visual cortex during visual stimulation with inconsistent results. We performed functional P MRS imaging in the visual cortex and control regions during a visual stimulation paradigm at an unprecedented sensitivity, exploiting a dedicated RF coil design at a 7 T MR system. Visual stimulation in a 3 min 24 s on-off paradigm in eight young healthy adults generated a clear BOLD effect with traditional H functional MRI in the visual cortex (average z score 9.

View Article and Find Full Text PDF

An often-employed strategy to enhance signals in (31) P MRS is the generation of the nuclear Overhauser effect (NOE) by saturation of the water resonance. However, NOE allegedly increases the variability of the (31) P data, because variation is reported in NOE enhancements. This would negate the signal-to-noise (SNR) gain it generates.

View Article and Find Full Text PDF

The design and construction of a dedicated RF coil setup for human brain imaging ((1)H) and spectroscopy ((31)P) at ultra-high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for (1)H (297.2 MHz) and (31)P (120.

View Article and Find Full Text PDF

Large dynamic fluctuations of the static magnetic field (B(0)) are observed in the human body during MR scanning, compromising image quality and detection sensitivity in several MR imaging and spectroscopy sequences. Partially, these dynamic B(0) fluctuations are due to physiological motion such as breathing, but other sources of temporal B(0) field fluctuations are also present in the MR system (e.g.

View Article and Find Full Text PDF

This study demonstrates the feasibility of the noninvasive determination of important biomarkers of human (breast) tumor metabolism using high-field (7-T) MRI and MRS. (31) P MRSI at this field strength was used to provide a direct method for the in vivo detection and quantification of endogenous biomarkers. These encompass phospholipid metabolism, phosphate energy metabolism and intracellular pH.

View Article and Find Full Text PDF