Publications by authors named "Bart Engels"

MiRNAs can regulate gene expression through versatile mechanisms that result in increased or decreased expression of the targeted mRNA and it could effect the expression of thousands of protein in a particular cell. An increasing body of evidence suggest that miRNAs action can be modulated by proteins that bind to the same 3'UTRs that are targeted by miRNAs, suggesting that other factors apart from miRNAs and their target sites determine miRNA-modulation of gene expression. We applied an affinity purification protocol using biotinylated let-7 miRNA inhibitor to isolate proteins that are involved in let-7 mediated gene regulation that resulted in an affinity purification of Polypyrimidine Tract Binding protein (PTB).

View Article and Find Full Text PDF

Previously, we have established that a product of the doublecortin-like kinase (DCLK) gene, DCLK-short, is cleaved by caspases during serum deprivation. Subsequently, the N-terminal cleavage product of DCLK-short facilitates apoptosis in the neuroblastoma cell line NG108. As this N-terminal cleavage product is highly homologous to calcium/calmodulin-dependent protein kinase-related peptide (CARP), another DCLK gene splice variant, we aimed to determine the possible apoptotic properties of CARP in vivo and in vitro.

View Article and Find Full Text PDF

Fragile X syndrome is the most common inherited form of mental retardation. It is caused by the lack of the Fragile X Mental Retardation Protein (FMRP), which is encoded by the FMR1 gene. Although Fmr1 knockout mice display some characteristics also found in fragile X patients, it is a complex animal model to study brain abnormalities, especially during early embryonic development.

View Article and Find Full Text PDF

The X-linked FMR1 gene, which is involved in the fragile X syndrome, forms a small gene family with its two autosomal homologs, FXR1 and FXR2. Mouse models for the FXR genes have been generated and proved to be valuable in elucidating the function of these genes, particularly in adult mice. Unfortunately, Fxr1 knockout mice die shortly after birth, necessitating an animal model that allows the study of the role of Fxr1p, the gene product of Fxr1, in early embryonic development.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers cloned two variants of the DCLK gene, named DCLK-short-A and DCLK-short-B, which encode different CaMK-like proteins with unique C-terminal ends.
  • In situ hybridization revealed that both variants have distinct expression patterns in various brain regions, with DCLK-short-A being more prevalent in the subependymal zone, while DCLK-short-B shows stronger expression in areas like the cortex and hypothalamic nuclei.
  • Both variants phosphorylate specific CaMK substrates, and the removal of their C-terminal ends significantly boosts kinase activity, suggesting these ends serve as auto-inhibitory domains that regulate different neuronal functions.
View Article and Find Full Text PDF