Publications by authors named "Bart De Gusseme"

Over time, humanity has addressed microbial water contamination in various ways. Historically, individuals resorted to producing beer to combat the issue. Fast forward to the 19th century, and we witnessed a scientific approach by Robert Koch.

View Article and Find Full Text PDF

Unlabelled: Biofilms within drinking water distribution systems serve as a habitat for drinking water microorganisms. However, biofilms can negatively impact drinking water quality by causing water discoloration and deterioration and can be a reservoir for unwanted microorganisms. In this study, we investigated whether indicator organisms for drinking water quality, such as coliforms, can settle in mature drinking water biofilms.

View Article and Find Full Text PDF

Biogenic palladium nanoparticles (bio-Pd NPs) are used for the reductive transformation and/or dehalogenation of persistent micropollutants. In this work, H (electron donor) was produced in situ by an electrochemical cell, permitting steered production of differently sized bio-Pd NPs. The catalytic activity was first assessed by the degradation of methyl orange.

View Article and Find Full Text PDF

The production of biogenic palladium nanoparticles (bio-Pd NPs) is widely studied due to their high catalytic activity, which depends on the size of nanoparticles (NPs). Smaller NPs (here defined as <100 nm) are more efficient due to their higher surface/volume ratio. In this work, inductively coupled plasma-mass spectrometry (ICP-MS), flow cytometry (FCM) and transmission electron microscopy (TEM) were combined to obtain insight into the formation of these bio-Pd NPs.

View Article and Find Full Text PDF

Safeguarding the microbial water quality remains a challenge for drinking water utilities, and because of population growth and climate change, new issues arise regularly. To overcome these problems, biostable drinking water production and water reuse will become increasingly important. In this respect, high-resolution online microbial monitoring during treatment and distribution could prove essential.

View Article and Find Full Text PDF

Microbial regrowth during drinking water distribution can result in a variety of problems such as a deviating taste and odor, and may even pose a risk to public health. Frequent monitoring is essential to anticipate events of biological instability, and relevant microbial parameters for operational control of biostability of drinking water should be developed. Here, online flow cytometry and derived biological metrics were used to assess the biological stability of a full-scale drinking water tower during normal and disturbed flow regime.

View Article and Find Full Text PDF

High-rate activated sludge (HRAS) systems typically generate diluted sludge which requires further thickening prior to anaerobic digestion (AD), besides the need to add considerable coagulant and flocculant for the solids separation. As an alternative to conventional gravitational settling, a dissolved air flotation (DAF) unit was coupled to a HRAS system or a high-rate contact stabilization (HiCS) system. The HRAS-DAF system allowed up to 78% removal of the influent solids, and the HiCS-DAF 67%.

View Article and Find Full Text PDF

Drinking water networks need maintenance every once in a while, either planned interventions or emergency repairs. When this involves opening of the water pipes, precautionary measures need to be taken to avoid contamination of the drinking water at all time. Drinking water suppliers routinely apply plating for faecal indicator organisms as quality control in such a situation.

View Article and Find Full Text PDF

Biofouling is a major challenge in the water industry and public health. Silver nanoparticles (AgNPs) have excellent antimicrobial properties and are considered to be a promising anti-biofouling agent. A modified method was used to produce small sized and well-dispersed biogenic silver nanoparticles with a mean size of ~6 nm (Bio-Ag0-6) using Lactobacillus fermentum.

View Article and Find Full Text PDF

By using the metal reducing capacities of bacteria, Pd nanoparticles can be produced in a sustainable way ('bio-Pd'). These bio-Pd nanoparticles can be used as a catalyst in, for example, dehalogenation reactions. However, some halogenated compounds are not efficiently degraded using a bio-Pd catalyst.

View Article and Find Full Text PDF

Biofouling is a major problem for the application of membrane technology in water and wastewater treatment. One of the practical strategies to decrease biofouling is the use of advanced anti-biofouling membrane material. In this study, different amounts of biogenic silver nanoparticles (bio-Ag(0)) were embedded in polyethersulfone (PES) membranes, using the phase-inversion method.

View Article and Find Full Text PDF

Diclofenac is one of the most commonly detected pharmaceuticals in wastewater treatment plant (WWTP) effluents and the receiving water bodies. In this study, biogenic Pd nanoparticles ('bio-Pd') were successfully applied in a microbial electrolysis cell (MEC) for the catalytic reduction of diclofenac. Hydrogen gas was produced in the cathodic compartment, and consumed as a hydrogen donor by the bio-Pd on the graphite electrodes.

View Article and Find Full Text PDF

To decrease the load of pharmaceuticals to the environment, decentralized wastewater treatment has been proposed for important point-sources such as hospitals. In this study, a microbial electrolysis cell (MEC) was used for the dehalogenation of the iodinated X-ray contrast medium diatrizoate. The presence of biogenic palladium nanoparticles (bio-Pd) in the cathode significantly enhanced diatrizoate removal by direct electrochemical reduction and by reductive catalysis using the H(2) gas produced at the cathode of the MEC.

View Article and Find Full Text PDF

A new biological inspired method to produce nanopalladium is the precipitation of Pd on a bacterium, i.e., bio-Pd.

View Article and Find Full Text PDF

While precious metals are available to a very limited extent, there is an increasing demand to use them as catalyst. This is also true for palladium (Pd) catalysts and their sustainable recycling and production are required. Since Pd catalysts exist nowadays mostly under the form of nanoparticles, these particles need to be produced in an environment-friendly way.

View Article and Find Full Text PDF

In a previous study, biogenic silver nanoparticles were produced by Lactobacillus fermentum which served as a matrix preventing aggregation. In this study the antibacterial activity of this biogenic silver was compared to ionic silver and chemically produced nanosilver. The minimal inhibitory concentration (MIC) was tested on Gram-positive and Gram-negative bacteria and was comparable for biogenic silver and ionic silver ranging from 12.

View Article and Find Full Text PDF

The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag(0)) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag(0) particles, preventing aggregation during encapsulation.

View Article and Find Full Text PDF

The incidence and fate of pharmaceuticals in the water cycle impose a growing concern for the future reuse of treated water. Because of the recurrent global use of drugs such as Acetaminophen (APAP), an analgesic and antipyretic drug, they are often detected in wastewater treatment plant (WWTP) effluents, receiving surface waters and drinking water resources. In this study, the removal of APAP has been demonstrated in a membrane bioreactor (MBR) fed with APAP as the sole carbon source.

View Article and Find Full Text PDF

The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29.

View Article and Find Full Text PDF

Mesophilic (37 degrees C) and thermophilic (52 degrees C) anaerobic digestion of pig slurry induced at least a 4-log decrease in murine norovirus 1, used as a surrogate virus for porcine norovirus, after 13 and 7 days, respectively. Bacteroides fragilis phage B40-8, employed as a universal viral model, was lowered by 2.5 log after 7 days.

View Article and Find Full Text PDF

The presence of enteric viruses in drinking water is a potential health risk. Growing interest has arisen in nanometals for water disinfection, in particular the use of silver-based nanotechnology. In this study, Lactobacillus fermentum served as a reducing agent and bacterial carrier matrix for zerovalent silver nanoparticles, referred to as biogenic Ag(0).

View Article and Find Full Text PDF

There is an increasing concern about the fate of iodinated contrast media (ICM) in the environment. Limited removal efficiencies of currently applied techniques such as advanced oxidation processes require more performant strategies. The aim of this study was to establish an innovative degradation process for diatrizoate, a highly recalcitrant ICM, by using biogenic Pd nanoparticles as free suspension or immobilized in polyvinylidene fluoride (PVDF) and polysulfone (PSf) membranes.

View Article and Find Full Text PDF

Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics.

View Article and Find Full Text PDF

Increasing concern about the fate of 17alpha-ethinylestradiol (EE2) in the environment stimulates the search for alternative methods for wastewater treatment plant (WWTP) effluent polishing. The aim of this study was to establish an innovative and effective biological removal technique for EE2 by means of a nitrifier enrichment culture (NEC) applied in a membrane bioreactor (MBR). In batch incubation tests, the microbial consortium was able to remove EE2 from both a synthetic minimal medium and WWTP effluent.

View Article and Find Full Text PDF

The emission of hydrogen sulfide into the atmosphere of sewer systems induces the biological production of sulfuric acid, causing severe concrete corrosion. As a possible preventive solution, a microbial consortium of nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) was enriched in a continuously stirred tank reactor in order to develop a biological technique for the removal of dissolved sulfide. The consortium, dominated by Arcobacter sp.

View Article and Find Full Text PDF