Publications by authors named "Barsanti L"

Though microscopy is most often intended as a technique for providing qualitative assessment of cellular and subcellular properties, when coupled with other instruments such as wavelength selectors, lasers, photoelectric devices and computers, it can perform a wide variety of quantitative measurements, which are demanding in establishing relationships between the properties and structures of biological material in all their spatial and temporal complexities. These combinations of instruments are a powerful approach to improve non-destructive investigations of cellular and subcellular properties (both physical and chemical) at a macromolecular scale resolution. Since many subcellular compartments in living cells are characterized by structurally organized molecules, this review deals with three advanced microscopy techniques well-suited for these kind of investigations, i.

View Article and Find Full Text PDF

Algae (macro- and micro-algae) can be defined as light-driven cell factories that synthesize bioactive compounds consisting of primary metabolites (i [...

View Article and Find Full Text PDF

Many algae synthesize compounds that have exceptional properties of nutraceutical, pharmacological, and biomedical interest. Pigments, fatty acids, phenols, and polysaccharides are among the main compounds investigated so far. Polysaccharides are the most exploited compounds, widely used in pharmaceutical, food, and chemical industries, which are at present entering into more advanced applications by gaining importance, from a therapeutic point of view, as antioxidant, antimicrobial, antitumor, and immunomodulatory agents.

View Article and Find Full Text PDF

Marine and freshwater microalgae belong to taxonomically and morphologically diverse groups of organisms spanning many phyla with thousands of species. These organisms play an important role as indicators of water ecosystem conditions since they react quickly and predictably to a broad range of environmental stressors, thus providing early signals of dangerous changes. Traditionally, microscopic analysis has been used to identify and enumerate different types of organisms present within a given environment at a given point in time.

View Article and Find Full Text PDF

An impossible structure gives us the impression of looking at a three-dimensional object, even though this object cannot exist, since it possesses parts that are spatially non-connectable, and are characterized by misleading geometrical properties not instantly evident. Therefore, impossible artworks appeal to our intellect and challenge our perceptive capacities. We analyzed lithographs containing impossible structures (e.

View Article and Find Full Text PDF

β-glucans, heterogeneous glucose polymers present in many organisms, have the capability to activate the innate immune system. Efficacy of activation depends on purity of the compound, molecular structure, polymerization degree, and source. One of the purest forms of crystallized β-(1-3)-glucan present in nature is the paramylon extracted from the WZSL non-chloroplastic mutant of , which can be processed to produce linear nanofibers capable of interacting with specific receptors present on cell membranes.

View Article and Find Full Text PDF

β-1,3-glucans such as paramylon act as elicitors in plants, modifying the hormonal levels and the physiological responses. Plant hormones affect all phases of the plant life cycle and their responses to environmental stresses, both biotic and abiotic. The aim of this study was to investigate the effects of a root treatment with Euglena gracilis paramylon on xylem hormonal levels, photosynthetic performance and dehydration stress in tomato (Solanum lycopersicum).

View Article and Find Full Text PDF

Background: In the age of online communication, psychiatric care can now be provided via videoconferencing technologies. While virtual visits as a part of telepsychiatry and telemental health provide a highly efficient and beneficial modality of care, the implementation of virtual visits requires attention to quality and safety issues. As practitioners continue to utilize this technology, issues of clinician licensing, treatment outcomes of virtual visits versus in-person visits, and cost offset require ongoing study.

View Article and Find Full Text PDF

The aim of this study was to verify the activation details and products of human lymphomonocytes, stimulated by different -glucans, that is paramylon, MacroGard, and lipopolysaccharide. We investigated the gene expression of inflammation-related cytokines and mediators, transactivation of relevant transcription factors, and phagocytosis role in cell-glucan interactions, by means of RT-PCR, immunocytochemistry, and colorimetric assay. Our results show that sonicated and alkalized paramylon upregulates pro-inflammatory factors (NO, TNF-, IL-6, and COX-2) in lymphomonocytes.

View Article and Find Full Text PDF

Microalgae are one of the most suitable subjects for testing the potentiality of light microscopy and image analysis, because of the size of single cells, their endogenous chromaticity, and their metabolic and physiological characteristics. Microscope observations and image analysis can use microalgal cells from lab cultures or collected from water bodies as model to investigate metabolic processes, behavior/reaction of cells under chemical or photic stimuli, and dynamics of population in the natural environment in response to changing conditions. In this paper we will describe the original microscope we set up together with the image processing techniques we improved to deal with these topics.

View Article and Find Full Text PDF

A novel procedure for deriving the absorption spectrum of an object spot from the colour values of the corresponding pixel(s) in its image is presented. Any digital image acquired by a microscope can be used; typical applications are the analysis of cellular/subcellular metabolic processes under physiological conditions and in response to environmental stressors (e.g.

View Article and Find Full Text PDF

Chlamydomonadales are elective subjects for the investigation of the problems related to locomotion and transport in biological fluid dynamics, whose resolution could enhance searching efficiency and assist in the avoidance of dangerous environments. In this paper, we elucidate the swimming behavior of Tetraflagellochloris mauritanica, a unicellular-multicellular alga belonging to the order Chlamydomonadales. This quadriflagellate alga has a complex swimming motion consisting of alternating swimming phases connected by in-place random reorientations and resting phases.

View Article and Find Full Text PDF

Microalgae are unicellular photoautotrophs that grow in any habitat from fresh and saline water bodies, to hot springs and ice. Microalgae can be used as indicators to monitor water ecosystem conditions. These organisms react quickly and predictably to a broad range of environmental stressors, thus providing early signals of a changing environment.

View Article and Find Full Text PDF

Here we report the identification and expression of a second rhodopsin-like protein in the alga Cyanophora paradoxa (Glaucophyta), named Cyanophopsin_2. This new protein was identified due to a serendipity event, since the RACE reaction performed to complete the sequence of Cyanophopsin_1, (the first rhodopsin-like protein of C. paradoxa identified in 2009 by our group), amplified a 619 bp sequence corresponding to a portion of a new gene of the same protein family.

View Article and Find Full Text PDF

Microalgae are unicellular photoautotrophic organisms that grow in any habitat such as fresh and salt water bodies, hot springs, ice, air, and in or on other organisms and substrates. Massive growth of microalgae may produce harmful effects on the marine and freshwater ecological environment and fishery resources. Therefore, rapid and accurate recognition and classification of microalgae is one of the most important issues in water resource management.

View Article and Find Full Text PDF

Morphological, ultrastructural, and molecular-sequence data were used to assess the phylogenetic position of a tetraflagellate green alga isolated from soil samples of a saline dry basin near F'derick, Mauritania. This alga can grow as individual cells or form non-coenobial colonies of up to 12 individuals. It has a parietal chloroplast with an embedded pyrenoid covered by a starch sheath and traversed by single parallel thylakoids, and an eyespot located in a parietal position opposite to the flagellar insertion.

View Article and Find Full Text PDF

The ability to sense light can be considered the most fundamental and presumably the most ancient property of visual systems. This ability is the basis of phototaxis, one of the most striking behavioral responses of motile photosynthetic microorganisms (i.e.

View Article and Find Full Text PDF

β-Glucans is the common name given to a group of chemically heterogeneous polysaccharides. They are long- or short-chain polymers of (1-->3)-β-linked glucose moieties which may be branched, with the branching chains linked to the backbone by a (1-->6)-β linkage. β-(1-->3)-Glucans are widely distributed in bacteria, algae, fungi and plants, where they are involved in cell wall structure and other biological function.

View Article and Find Full Text PDF

Here, we report the DNA sequence of the rhodopsin gene in the alga Cyanophora paradoxa (Glaucophyta). The primers were designed according to the conserved regions of prokaryotic and eukaryotic rhodopsin-like proteins deposited in the GenBank. The sequence consists of 1,272 bp comprised of 5 introns.

View Article and Find Full Text PDF

A relatively small number of freshwater dinoflagellates are involved in symbiotic association with cryptophytes. The chloroplasts of the cryptophytes are retained by the dinoflagellate and give it the characteristic phycobilin pigmentation, either phycoerythrin or phycocyanin. The pigment characterization of the retained chloroplasts can give precise and accurate information about the type of cryptophyte preyed upon by the dinoflagellate.

View Article and Find Full Text PDF

In this paper we report the results of measurements performed by FLIM on the photoreceptor of Euglenagracilis. This organelle consists of optically bistable proteins, characterized by two thermally stable isomeric forms: A(498,) non fluorescent and B(462), fluorescent. Our data indicate that the primary photoevent of Euglena photoreception upon photon absorption consists of two contemporaneous different phenomena: an intramolecular photo-switch (i.

View Article and Find Full Text PDF

In microorganisms and plants, chromium (Cr) is not essential for any metabolic process, and can ultimately prove highly deleterious. Due to its widespread industrial use, chromium has become a serious pollutant in diverse environmental settings. The presence of Cr leads to the selection of specific algal populations able to tolerate high levels of Cr compounds.

View Article and Find Full Text PDF

Euglena gracilis possesses a simple but sophisticated light detecting system, consisting of an eyespot formed by carotenoids globules and a photoreceptor. The photoreceptor of Euglena is characterized by optical bistability, with two stable states. In order to provide important and discriminating information on the series of structural changes that Euglena photoreceptive protein(s) undergoes inside the photoreceptor in response to light, we measured the in vivo absorption spectra of the two stable states A and B of photoreceptor photocycle.

View Article and Find Full Text PDF

This paper deals with the first characterization of the structure of the photoreceptive organelle of the unicellular alga Euglena gracilis (Euglenophyta). This organelle has a three-dimensional organization consisting of up to 50 closely stacked membrane lamellae. Ionically induced unstacking of the photoreceptor lamellae revealed ordered arrays well suited to structural analysis by electron microscopy and image analysis, which ultimately yielded a low-resolution picture of the structure.

View Article and Find Full Text PDF

Background: The pathobiological mechanisms by which Hcy can promote atherothrombosis are not completely understood. Many observations suggest that oxidative consequences of hyperhomocysteinemia have a distinct role in the development of occlusive vascular disease. The aim of this work was to investigate whether sensitivity of erythrocytes to chemically induced oxidative stress in both healthy subjects and patients with clinically ascertained atherosclerosis was modified during the transient increase in homocysteine driven by methionine load.

View Article and Find Full Text PDF