The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-) channel that governs the quantity and composition of epithelial secretions. CFTR function is normally tightly controlled as dysregulation can lead to life-threatening diseases such as secretory diarrhoea and cystic fibrosis. CFTR activity is regulated by phosphorylation of its cytosolic regulatory (R) domain, and ATP binding and hydrolysis at two nucleotide-binding domains (NBDs).
View Article and Find Full Text PDFBackground & Aims: The effects of trypsin on pancreatic ductal epithelial cells (PDECs) vary among species and depend on the localization of proteinase-activated receptor 2 (PAR-2). We compared PAR-2 localization in human and guinea-pig PDECs, and used isolated guinea pig ducts to study the effects of trypsin and a PAR-2 agonist on bicarbonate secretion.
Methods: PAR-2 localization was analyzed by immunohistochemistry in guinea pig and human pancreatic tissue samples (from 15 patients with chronic pancreatitis and 15 without pancreatic disease).
Objectives: Low doses of chenodeoxycholate (CDC) stimulate apical anion exchange and HCO3(-) secretion in guinea pig pancreatic duct cells (Gut. 2008;57:1102-1112). We examined the effects of CDC on intracellular pH (pHi), intracellular Ca(2+) concentration ([Ca(2+)]i), and apical Cl(-)/HCO3(-) exchange activity in human pancreatic duct cells and determined whether any effects were dependent on cystic fibrosis transmembrane conductance regulator (CFTR) expression and Cl(-) channel activity.
View Article and Find Full Text PDFCystic fibrosis (CF) is a fatal inherited disease caused by the absence or dysfunction of the CF transmembrane conductance regulator (CFTR) Cl- channel. About 70% of CF patients are exocrine pancreatic insufficient due to failure of the pancreatic ducts to secrete a HCO3- -rich fluid. Our aim in this study was to investigate the potential of a recombinant Sendai virus (SeV) vector to introduce normal CFTR into human CF pancreatic duct (CFPAC-1) cells, and to assess the effect of CFTR gene transfer on the key transporters involved in HCO3- transport.
View Article and Find Full Text PDFSLC26 anion exchangers (probably SLC26A3 and SLC26A6) are expressed on the apical membrane of pancreatic duct cells and play a key role in HCO3- secretion; a process that is inhibited by the neuropeptide, substance P (SP). SP had no effect on basolateral HCO3- transporters in the duct cell or on CFTR Cl- channels, but inhibited a Cl- -dependent HCO3- efflux step on the apical membrane. In microperfused ducts, luminal H2DIDS (0.
View Article and Find Full Text PDFWorld J Gastroenterol
February 2006
Aim: To characterize H+ and HCO3- transporters in polarized CFPAC-1 human pancreatic duct cells, which were derived from a cystic fibrosis patient with the DeltaF508 CFTR mutation.
Methods: CFPAC-1 cells were seeded at high density onto permeable supports and grown to confluence. The cells were loaded with the pH-sensitive fluorescent dye BCECF, and mounted into a perfusion chamber, which allowed the simultaneous perfusion of the basolateral and apical membranes.
World J Gastroenterol
October 2005
Aim: To examine the effect of acute infection caused by herpesvirus (pseudorabies virus, PRV) on pancreatic ductal secretion.
Methods: The virulent Ba-DupGreen (BDG) and non-virulent Ka-RREp0lacgfp (KEG) genetically modified strains of PRV were used in this study and both of them contain the gene for green fluorescent protein (GFP). Small intra/interlobular ducts were infected with BDG virus (10(7) PFU/mL for 6 h) or with KEG virus (10(10) PFU/mL for 6 h), while non-infected ducts were incubated only with the culture media.
The inhibitory control of pancreatic ductal HCO(3)(-) secretion may be physiologically important in terms of limiting the hydrostatic pressure developed within the ducts and in terms of switching off pancreatic secretion after a meal. Substance P (SP) inhibits secretin-stimulated HCO(3)(-) secretion by modulating a Cl(-)-dependent HCO(3)(-) efflux step at the apical membrane of the duct cell (Hegyi P, Gray MA, and Argent BE. Am J Physiol Cell Physiol 285: C268-C276, 2003).
View Article and Find Full Text PDFWe describe an air-liquid interface primary culture method for murine tracheal epithelial cells on semi-permeable membranes, forming polarized epithelia with a high transepithelial resistance, differentiation to ciliated and secretory cells, and physiologically appropriate expression of key genes and ion channels. We also describe the isolation of primary murine nasal epithelial cells for patch-clamp analysis, generating polarised cells with physiologically appropriate distribution and ion channel expression. These methods enable more physiologically relevant analysis of murine airway epithelial cells in vitro and ex vivo, better utilisation of transgenic mouse models of human pulmonary diseases, and have been approved by the European Working Group on CFTR expression.
View Article and Find Full Text PDFThe cystic fibrosis transmembrane conductance regulator (CFTR) is vital for Cl(-) and HCO(3)(-) transport in many epithelia. As the HCO(3)(-) concentration in epithelial secretions varies and can reach as high as 140 mm, the lumen-facing domains of CFTR are exposed to large reciprocal variations in Cl(-) and HCO(3)(-) levels. We have investigated whether changes in the extracellular anionic environment affects the activity of CFTR using the patch clamp technique.
View Article and Find Full Text PDFPancreatic duct cells secrete the bicarbonate ions found in pancreatic juice. Impairment of ductal bicarbonate secretion, as occurs in cystic fibrosis, has serious consequences for pancreatic function and for the structural integrity of the gland. As bicarbonate is a buffer ion, the accurate measurement of intracellular pH (pHi) in duct cells is an important technique for studying the mechanisms of bicarbonate transport.
View Article and Find Full Text PDFPancreatic duct cells express a Ca2+-activated Cl- conductance (CaCC), upregulation of which may be beneficial to patients with cystic fibrosis. Here, we report that HPAF, a human pancreatic ductal adenocarcinoma cell line that expresses CaCC, develops into a high-resistance, anion-secreting epithelium. Mucosal ATP (50 microM) caused a fourfold increase in short-circuit current (Isc), a hyperpolarization of transepithelial potential difference (from -4.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
August 2003
The stimulatory pathways controlling HCO3- secretion by the pancreatic ductal epithelium are well described. However, only a few data are available concerning inhibitory mechanisms, which may play an important role in the physiological control of the pancreas. The aim of this study was to investigate the cellular mechanism by which substance P (SP) inhibits pancreatic ductal HCO3- secretion.
View Article and Find Full Text PDFTwo Cl(-) conductances have been described in the apical membrane of both human and murine proximal airway epithelia that are thought to play predominant roles in airway hydration: (1) CFTR, which is cAMP regulated and (2) the Ca(2+)-activated Cl(-) conductance (CaCC) whose molecular identity is uncertain. In addition to second messenger regulation, cross talk between these two channels may also exist and, whereas CFTR is absent or defective in cystic fibrosis (CF) airways, CaCC is preserved, and may even be up-regulated. Increased CaCC activity in CF airways is controversial.
View Article and Find Full Text PDF