Introduction: People living with frailty risk adverse outcomes following even minor illnesses. Admission to hospital or the intensive care unit is associated with potentially burdensome interventions and poor outcomes. Decision-making during an emergency is fraught with complexity and potential for conflict between patients, carers and clinicians.
View Article and Find Full Text PDFMesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in coronavirus disease (COVID-19)-related acute respiratory distress syndrome (ARDS). We investigated the safety and efficacy of ORBCEL-C (CD362 [cluster of differentiation 362]-enriched, umbilical cord-derived MSCs) in COVID-19-related ARDS. In this multicenter, randomized, double-blind, allocation-concealed, placebo-controlled trial (NCT03042143), patients with moderate to severe COVID-19-related ARDS were randomized to receive ORBCEL-C (400 million cells) or placebo (Plasma-Lyte 148).
View Article and Find Full Text PDFBackground: Mesenchymal stromal cells (MSCs) may be of benefit in ARDS due to immunomodulatory and reparative properties. This trial investigates a novel CD362 enriched umbilical cord derived MSC product (REALIST ORBCEL-C), produced to Good Manufacturing Practice standards, in patients with moderate to severe ARDS due to COVID-19 and ARDS due to other causes.
Methods: Phase 1 is a multicentre open-label dose-escalation pilot trial.
Background: Mesenchymal stromal cells (MSCs) may be of benefit in acute respiratory distress syndrome (ARDS) due to immunomodulatory, reparative, and antimicrobial actions. ORBCEL-C is a population of CD362 enriched umbilical cord-derived MSCs. The REALIST phase 1 trial investigated the safety and feasibility of ORBCEL-C in patients with moderate to severe ARDS.
View Article and Find Full Text PDFObjectives: The primary objective of the study is to assess the safety of a single intravenous infusion of Mesenchymal Stromal Cells (MSCs) in patients with Acute Respiratory Distress Syndrome (ARDS) due to COVID-19. Secondary objectives are to determine the effects of MSCs on important clinical outcomes, as described below.
Trial Design: REALIST COVID 19 is a randomised, placebo-controlled, triple blinded trial.
We report the successful use of colorimetric arrays to identify chemical warfare agents (CWAs). Methods were developed to interpret and analyze a 73-indicator array with an entirely automated workflow. Using a cross-validated first-nearest-neighbor algorithm for assessing detection and identification performances on 632 exposures, at 30 min postexposure we report, on average, 78% correct chemical identification, 86% correct class-level identification, and 96% correct red light/green light (agent versus non-agent) detection.
View Article and Find Full Text PDFThis article presents new spectroscopic results in standoff chemical detection that are enabled by monolithic arrays of Distributed Feedback (DFB) Quantum Cascade Lasers (QCLs), with each array element at a slightly different wavelength than its neighbor. The standoff analysis of analyte/substrate pairs requires a laser source with characteristics offered uniquely by a QCL Array. This is particularly true for time-evolving liquid chemical warfare agent (CWA) analysis.
View Article and Find Full Text PDFCardiac arrest effectiveness trials have traditionally reported outcomes that focus on survival. A lack of consistency in outcome reporting between trials limits the opportunities to pool results for meta-analysis. The COSCA initiative (Core Outcome Set for Cardiac Arrest), a partnership between patients, their partners, clinicians, research scientists, and the International Liaison Committee on Resuscitation, sought to develop a consensus core outcome set for cardiac arrest for effectiveness trials.
View Article and Find Full Text PDFCardiac arrest effectiveness trials have traditionally reported outcomes that focus on survival. A lack of consistency in outcome reporting between trials limits the opportunities to pool results for meta-analysis. The COSCA initiative (Core Outcome Set for Cardiac Arrest), a partnership between patients, their partners, clinicians, research scientists, and the International Liaison Committee on Resuscitation, sought to develop a consensus core outcome set for cardiac arrest for effectiveness trials.
View Article and Find Full Text PDFBacteria can evolve rapidly under positive selection owing to their vast numbers, allowing their genes to diversify by adapting to different environments. We asked whether the same genes that evolve rapidly in the long-term evolution experiment (LTEE) with Escherichia coli have also diversified extensively in nature. To make this comparison, we identified ∼2000 core genes shared among 60 E.
View Article and Find Full Text PDFIntracellular triacylglycerol (TAG) is a ubiquitous energy storage lipid also involved in lipid homeostasis and signaling. Comparatively, little is known about TAG's role in other cellular functions. Here we show a pro-longevity function of TAG in the budding yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFPheromones play an important role in modifying vertebrate behavior, especially during courtship and mating. Courtship behavior in urodele amphibians often includes female exposure to secretions from the cloacal gland, as well as other scent glands. The first vertebrate proteinaceous pheromone discovered, the decapeptide sodefrin, is a female attracting pheromone secreted by the cloacal gland of male Cynops pyrrhogaster.
View Article and Find Full Text PDFBackground: Elucidating the mechanisms underlying coevolution of ligands and receptors is an important challenge in molecular evolutionary biology. Peptide hormones and their receptors are excellent models for such efforts, given the relative ease of examining evolutionary changes in genes encoding for both molecules. Most vertebrates possess multiple genes for both the decapeptide gonadotropin releasing hormone (GnRH) and for the GnRH receptor.
View Article and Find Full Text PDFHsp70 molecular chaperones are ubiquitous. By preventing aggregation, promoting folding, and regulating degradation, Hsp70s are major factors in the ability of cells to maintain proteostasis. Despite a wealth of functional information, little is understood about the evolutionary dynamics of Hsp70s.
View Article and Find Full Text PDFThe modern delineation of taxonomic groups is often aided by analyses of molecular data, which can also help inform conservation biology. Two subspecies of the butterfly Neonympha mitchellii are classified as federally endangered in the United States: Neonympha mitchellii mitchellii, the Mitchell's satyr, and Neonympha mitchellii francisi, the Saint Francis's satyr. The recent discovery of additional disjunct populations of N.
View Article and Find Full Text PDFUnlabelled: Microorganisms use a variety of metabolites to respond to external stimuli, including second messengers that amplify primary signals and elicit biochemical changes in a cell. Levels of the second messenger cyclic dimeric GMP (c-di-GMP) are regulated by a variety of environmental stimuli and play a critical role in regulating cellular processes such as biofilm formation and cellular motility. Cyclic di-GMP signaling systems have been largely characterized in pathogenic bacteria; however, proteins that can impact the synthesis or degradation of c-di-GMP are prominent in cyanobacterial species and yet remain largely underexplored.
View Article and Find Full Text PDFJ Neuropsychiatry Clin Neurosci
May 2013
J Neuropsychiatry Clin Neurosci
November 2012
Bupropion hydrochloride is an inhibitor of dopamine and norepinephrine, which is commonly prescribed for major depression, smoking cessation, and bipolar depression. Here we report a highly unusual case of bupropion induced knee monoarthritis in a bipolar depression patient. With bupropion XL 150 mg for 2 weeks, her left knee began to swell; at the third week, this condition was worsening.
View Article and Find Full Text PDFMitochondria are essential organelles required for a number of key cellular processes. As most mitochondrial proteins are nuclear encoded, their efficient translocation into the organelle is critical. Transport of proteins across the inner membrane is driven by a multicomponent, matrix-localized "import motor," which is based on the activity of the molecular chaperone Hsp70 and a J-protein cochaperone.
View Article and Find Full Text PDF