Publications by authors named "Barry V Pepich"

Experiments were conducted to develop a method for the determination of a set of 17 military-relevant energetic compounds (including nitroaromatics, nitramines, and nitrate esters) in 5 types of marine tissues (Dungeness crab, Manila clam, starry flounder, sea cucumber, and geoduck) using reversed-phase high performance liquid chromatography with a UV detector (RP-HPLC-UV). Dry-ice grinding was evaluated and found to be an excellent method of sample homogenization prior to sample extraction and determination. An extract cleanup procedure based on solid-phase extraction was assessed.

View Article and Find Full Text PDF
Article Synopsis
  • Endocrine disrupting compounds (EDCs) in wastewater effluents disrupt fish reproduction, particularly affecting gonad development and vitellogenin (Vtg) production.
  • This study investigated how EDC exposure impacts the expression of pituitary gonadotropin mRNA, specifically focusing on the Lh beta-subunit (lhb) as a potential biomarker for estrogen exposure in juvenile coho salmon.
  • Results showed that juvenile coho salmon exhibited significantly increased lhb mRNA levels in response to certain EDC concentrations and also from five different WWTP effluents, while Vtg levels were only dramatically elevated under specific EDC conditions, indicating the complex effects of estrogen exposure.
View Article and Find Full Text PDF

U.S. Environmental Protection Agency (EPA) Method 1623 is designed to detect and determine concentrations of Cryptosporidium oocysts and Giardia cysts in water through concentration, immuno-magnetic separation (IMS), and immuno-fluorescence assay with microscopic examination.

View Article and Find Full Text PDF

A direct injection, liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for the analysis of the chloro-s-triazine herbicides and their degradates in finished drinking water. The target compounds in the method were selected based on their inclusion in a common mechanism group (CMG) because of their ability to induce a similar toxic effect through a common mechanism of toxicity. The target list includes the chloro-s-triazines (atrazine, simazine, cyanazine, and propazine) and their dealkylated degradates (desethylatrazine, desisopropylatrazine, and diaminochlorotriazine).

View Article and Find Full Text PDF

Lissamine Green B (LGB) was carefully selected as a potential candidate for the development of a new U.S. Environmental Protection Agency (EPA) method that is intended for use at water utilities to determine chlorine dioxide (ClO2) in drinking water.

View Article and Find Full Text PDF

The United States Environmental Protection Agency's Office of Ground Water and Drinking Water has developed a single-laboratory quantitation procedure: the lowest concentration minimum reporting level (LCMRL). The LCMRL is the lowest true concentration for which future recovery is predicted to fall, with high confidence (99%), between 50% and 150%. The procedure takes into account precision and accuracy.

View Article and Find Full Text PDF

Method 527 was developed to address the occurrence monitoring needs of the U.S. Environmental Protection Agency (EPA) under its second unregulated contaminant monitoring rule (UCMR 2).

View Article and Find Full Text PDF

Concerns about the potential adverse health effects of perchlorate at concentrations below the minimum reporting level (MRL) of US Environmental Protection Agency (EPA) Method 314.0 (generally recognized as 4.0 microg/l) have led to an interest in increasing the sensitivity of the method.

View Article and Find Full Text PDF

Three methods are currently approved by the US Environmental Protection Agency for the compliance monitoring of haloacetic acids in drinking waters. Each derivatizes the acids to their corresponding esters using either acidic methanol or diazomethane. This study was undertaken to characterize the extent of methylation of these analytes by these methods, and to fully optimize methylation chemistries to improve analytical sensitivity, precision and accuracy.

View Article and Find Full Text PDF

Haloacetic acids (HAAs), which are formed during the disinfection of drinking waters with chlorine, are regulated by the US Environmental Protection Agency (EPA) under the Stage 1 Disinfectant/Disinfection Byproducts (D/DBP) Rule. Recently, three studies have been reported indicating that low concentrations of HAAs can also be formed during disinfection with chloramines. Methods currently approved for compliance monitoring under the Stage 1 Rule arrest the chlorine-mediated formation of HAAs by adding ammonium chloride, which forms chloramines.

View Article and Find Full Text PDF

In 1998, the United States Environmental Protection Agency (EPA) promulgated the maximum contaminant level (MCL) for bromate in drinking water at 10 microg/l, and the method for compliance monitoring of bromate in drinking water was established under Stage 1 of the Disinfectants/Disinfection By-Products Rule (D/DBP) as EPA Method 300.1. In January 2002, the United States Food and Drug Administration (FDA) regulated the bromate concentration in bottled waters at 10 microg/l.

View Article and Find Full Text PDF

The development of US Environmental Protection Agency (EPA) Method 317.0 provided a more sensitive, acceptable alternative to EPA Method 300.1 to be proposed as one of the recommended compliance monitoring methods for Stage II of the Disinfectants/Disinfection By-Products (DBP) Rule.

View Article and Find Full Text PDF

A high performance liquid chromatographic method was developed to meetthe U.S. Environmental Protection Agency's (EPA) Unregulated Contaminant Monitoring Rule (UCMR) Survey need for the analysis of phenylurea pesticides in drinking waters.

View Article and Find Full Text PDF