Members of a novel class of 4-amino-6-arylamino-pyrimidine-5-carbaldehyde hydrazones were identified as potent dual ErbB-2/EGFR kinase inhibitors using concept-guided design approach. These compounds inhibited the growth of ErbB-2 over-expressing human tumor cell lines (BT474, N87, and SK-BR-3) in vitro. Compound 15 emerged as a key lead and showed significant ability to inhibit growth factor-induced receptor phosphorylation in SK-BR-3 cells (IC(50)=54 nM) and cellular proliferation in vitro (IC(50)=14, 58, and 58 nM for BT474, N87, and SK-BR-3 respectively).
View Article and Find Full Text PDFWe herein disclose a novel series of 4-aminopyrimidine-5-carbaldehyde oximes that are potent and selective inhibitors of both EGFR and ErbB-2 tyrosine kinases, with IC(50) values in the nanomolar range. Structure-activity relationship (SAR) studies elucidated a critical role for the 4-amino and C-6 arylamino moieties. The X-ray co-crystal structure of EGFR with 37 was determined and validated our design rationale.
View Article and Find Full Text PDFWe screened the ligand-binding domain of estrogen-related receptor (ERR) gamma in ThermoFluor, in an effort to develop chemical tools and decipher the biology of this orphan nuclear receptor. Several ligands were found to stabilize thermodynamically the protein. Amongst the ligands were bisphenol A (BPA) and 4-chloro-3-methyl phenol (ClCH3Ph).
View Article and Find Full Text PDFThe reliable production of large amounts of stable, high-quality proteins is a major challenge facing pharmaceutical protein biochemists, necessary for fulfilling demands from structural biology, for high-throughput screening, and for assay purposes throughout early discovery. One strategy for bypassing purification challenges in problematic systems is to engineer multiple forms of a particular protein to optimize expression, purification, and stability, often resulting in a nonphysiological sub-domain. An alternative strategy is to alter process conditions to maximize wild-type construct stability, based on a specific protein stability profile (PSP).
View Article and Find Full Text PDFA parallel approach to designing crystallization constructs for the c-FMS kinase domain was implemented, resulting in proteins suitable for structural studies. Sequence alignment and limited proteolysis were used to identify and eliminate unstructured and surface-exposed domains. A small library of chimeras was prepared in which the kinase insert domain of FMS was replaced with the kinase insert domain of previously crystallized receptor-tyrosine kinases.
View Article and Find Full Text PDFThe cFMS proto-oncogene encodes for the colony-stimulating factor-1 receptor, a receptor-tyrosine kinase responsible for the differentiation and maturation of certain macrophages. Upon binding its ligand colony-stimulating factor-1 cFMS autophosphorylates, dimerizes, and induces phosphorylation of downstream targets. We report the novel crystal structure of unphosphorylated cFMS in complex with two members of different classes of drug-like protein kinase inhibitors.
View Article and Find Full Text PDFIntegral membrane G protein-coupled receptors (GPCRs) compose the single most prolific class of drug targets, yet significant functional and structural questions remain unanswered for this superfamily. A primary reason for this gap in understanding arises from the difficulty of forming soluble, monodisperse receptor membrane preparations that maintain the transmembrane signaling activity of the receptor and provide robust biophysical and biochemical assay systems. Here we report a technique for self-assembling functional beta2-adrenergic receptor (beta2AR) into a nanoscale phospholipid bilayer system (Nanodisc) that is highly soluble in aqueous solution.
View Article and Find Full Text PDFMAPK-activated protein kinase-2 (MAPKAPK2) regulates the synthesis of tumor necrosis factor and other cytokines and is a potential drug target for inflammatory diseases. Five protein constructs were produced in 4-10mg quantities per liter of culture media using baculovirus-infected insect cells and characterized for kinase activity, thermal stability, and ligand-binding affinity. Compared to construct 1-370, removal of the C-terminal autoinhibitory peptide in 1-338 resulted in a destabilized but partially active nonphosphorylated enzyme; phosphorylation of 1-338 by p38alpha further increased activity 12-fold.
View Article and Find Full Text PDF2-Hydroxy-4,6-diamino-[1,3,5]triazines are described which are a novel class of potent inhibitors of the VEGF-R2 (flk-1/KDR) tyrosine kinase. 4-(Benzothiazol-6-ylamino)-6-(benzyl-isopropyl-amino)-[1,3,5]triazin-2-ol (14d) exhibited low nanomolar potency in the in vitro enzyme inhibition assay (IC(50) = 18 nM) and submicromolar inhibitory activity in a KDR-induced MAP kinase autophosphorylation assay in HUVEC cells (IC(50) = 280 nM), and also demonstrated good in vitro selectivity against a panel of growth factor receptor tyrosine kinases. Further, 14d showed antiangiogenic activity in an aortic ring explant assay by blocking endothelial outgrowths in rat aortas with an IC(50) of 1 microM.
View Article and Find Full Text PDFThe protein product of an essential gene of unknown function from Streptococcus pneumoniae was expressed and purified for screening in the ThermoFluor affinity screening assay. This assay can detect ligand binding to proteins of unknown function. The recombinant protein was found to be in a dimeric, native-like folded state and to unfold cooperatively.
View Article and Find Full Text PDF