Publications by authors named "Barry Polisky"

We demonstrate a systematic and rational approach to create a library of natural and modified, dialkylated amino acids based upon arginine for development of an efficient small interfering RNA (siRNA) delivery system. These amino acids, designated DiLA₂ compounds, in conjunction with other components, demonstrate unique properties for assembly into monodisperse, 100-nm small liposomal particles containing siRNA. We show that DiLA₂-based liposomes undergo a pH-dependent phase transition to an inverted hexagonal phase facilitating efficient siRNA release from endosomes to the cytosol.

View Article and Find Full Text PDF

Harnessing RNA interference (RNAi) to silence aberrant gene expression is an emerging approach in cancer therapy. Selective inhibition of an overexpressed gene via RNAi requires a highly efficacious, target-specific short interfering RNA (siRNA) and a safe and efficient delivery system. We have developed siRNA constructs (UsiRNA) that contain unlocked nucleobase analogs (UNA) targeting survivin and polo-like kinase-1 (PLK1) genes.

View Article and Find Full Text PDF

siRNAs confer sequence specific and robust silencing of mRNA. By virtue of these properties, siRNAs have become therapeutic candidates for disease intervention. However, their use as therapeutic agents can be hampered by unintended off-target effects by either or both strands of the siRNA duplex.

View Article and Find Full Text PDF

The use of short interfering RNAs (siRNA) in animals for target validation or as potential therapeutics is hindered by the short physical half-life when delivered as unencapsulated material and in turn the short active half-life of siRNAs in vivo. Here we demonstrate that the character of the two 3'-overhang nucleotides of the guide strand of siRNAs is a determinant of the duration of silencing by siRNAs both in vivo and in tissue culture cells. We demonstrate that deoxyribonucleotides in the guide strand overhang of siRNAs have a negative impact on maintenance of both the in vitro and in vivo activity of siRNAs over time.

View Article and Find Full Text PDF

The transcription factor TORC2 [transducer of regulated cAMP-responsive element-binding protein (CREB) activity 2] is a major regulator of hepatic gluconeogenesis and is increased in hyperglycemic rodent models. Because chronic hyperglycemia and increased hepatic glucose production, via increased gluconeogenesis, is a key feature of type 2 diabetes, an effective in vivo method to efficiently knock down TORC2 could provide a potential therapy for treating hyperglycemia and type 2 diabetes. To assess this, primary mouse hepatocytes, high-fat diet (HFD)-fed mice, and Zucker diabetic fatty (ZDF) rats were treated with a siRNA against TORC2 (siTORC2), which was delivered via a novel lipid nanoparticle system, or control siRNA (siCON).

View Article and Find Full Text PDF

Huntington's disease (HD) is a fatal, dominant neurodegenerative disease caused by a polyglutamine repeat expansion in exon 1 of the HD gene, which encodes the huntingtin protein. We and others have shown that RNAi is a candidate therapy for HD because expression of inhibitory RNAs targeting mutant human HD transgenes improved neuropathology and behavioral deficits in HD mouse models. Here, we developed shRNAs targeting conserved sequences in human HD and mouse HD homolog (HDh) mRNAs to initiate preclinical testing in a knockin mouse model of HD.

View Article and Find Full Text PDF

Background: RNA interference is an endogenous cellular mechanism in which short interfering RNAs (siRNAs) direct the sequence specific degradation of a target mRNA. siRNAs can be synthesized with chemical modifications to increase stability and reduce double-stranded RNA-induced immune responses without affecting their ability to elicit degradation of target mRNA.

Objectives: This study examined the use of chemically modified siRNAs in a mouse model of allergen-induced airway hyperresponsiveness.

View Article and Find Full Text PDF

The efficacy of lipid-encapsulated, chemically modified short interfering RNA (siRNA) targeted to hepatitis B virus (HBV) was examined in an in vivo mouse model of HBV replication. Stabilized siRNA targeted to the HBV RNA was incorporated into a specialized liposome to form a stable nucleic-acid-lipid particle (SNALP) and administered by intravenous injection into mice carrying replicating HBV. The improved efficacy of siRNA-SNALP compared to unformulated siRNA correlates with a longer half-life in plasma and liver.

View Article and Find Full Text PDF

To develop synthetic short interfering RNA (siRNA) molecules as therapeutic agents for systemic administration in vivo, chemical modifications were introduced into siRNAs targeted to conserved sites in hepatitis B virus (HBV) RNA. These modifications conferred significantly prolonged stability in human serum compared with unmodified siRNAs. Cell culture studies revealed a high degree of gene silencing after treatment with the chemically modified siRNAs.

View Article and Find Full Text PDF

Many reports have suggested that target-activated ribozymes hold potential value as detection reagents. We show that a "half"-ribozyme ligase is activated similarly by three unstructured oligoribonucleotides representing the major sequence variants of a hepatitis C virus 5'-untranslated region (5'-UTR) target and by a structured RNA corresponding to the entire 5'-UTR. Half-ribozyme ligation product was detected both in an ELISA-like assay and in an optical immunoassay through the use of hapten-carrying substrate RNAs.

View Article and Find Full Text PDF

Human rhinoviruses (HRV) are the main cause of the common cold. Viral replication utilizes the activity of the HRV3C protease (3CP) enzyme [Antimicrob. Agents Chemother.

View Article and Find Full Text PDF

Background: The recommendation for population- based cystic fibrosis (CF) carrier screening by the American College of Medical Genetics for the 25 most prevalent mutations and 6 polymorphisms in the CF transmembrane regulatory gene has greatly increased clinical laboratory test volumes. We describe the development and technical validation of a DNA chip in a 96-well format to allow for high-throughput genotype analysis.

Methods: The CF Portrait chip contains an 8 x 8 array of capture probes and controls to detect all requisite alleles.

View Article and Find Full Text PDF

We describe a strategy for the ultra-sensitive detection of nucleic acids using "half" ribozymes that are devoid of catalytic activity unless completed by a trans-acting target nucleic acid. The half-ribozyme concept was initially demonstrated using a construct derived from a multiple turnover Class I ligase. Iterative RNA selection was carried out to evolve this half-ribozyme into one activated by a conserved sequence present in the hepatitis C virus (HCV) genome.

View Article and Find Full Text PDF

We have developed a rapid and sensitive thin film assay for in-process monitoring of target protein purification. This novel biosensor method provides rapid (5-min) visual evaluation of column purification fractions. The method can be used to monitor the efficiency of purification and potential loss of protein if the column binding capacity is exceeded.

View Article and Find Full Text PDF