Low-temperature thermochronology is a powerful tool for constraining the thermal evolution of rocks and minerals in relation to a breadth of tectonic, geodynamic, landscape evolution, and natural resource formation processes through deep time. However, complexities inherent to these analytical techniques can make interpreting the significance of results challenging, requiring them to be placed in their geological context in 4-dimensions (3D + time). We present a novel tool for the geospatial archival, analysis and dissemination of fission-track and (U-Th)/He data, built as an extension to the open-access AusGeochem platform ( https://ausgeochem.
View Article and Find Full Text PDFClimate influences the erosion processes acting at the Earth's surface. However, the effect of cooling during the Late Cenozoic era, including the onset of Pliocene-Pleistocene Northern Hemisphere glaciation (about two to three million years ago), on global erosion rates remains unclear. The uncertainty arises mainly from a lack of consensus on the use of the sedimentary record as a proxy for erosion and the difficulty of isolating the respective contributions of tectonics and climate to erosion.
View Article and Find Full Text PDF