Publications by authors named "Barry K Hurlburt"

Background: Oral immunotherapy (OIT) with peanut () allergen powder-dnfp (PTAH; Aimmune Therapeutics) is an FDA-approved treatment to desensitize peanut allergic participants.

Objective: Here we assessed shifts in IgE and IgG4 binding to peanut allergens and their epitopes recognized by United States (US) peanut allergic participants ( = 20) enrolled in phase 3 PTAH OIT clinical trials.

Methods: Pre- and post- trial participant sera were collected approximately 12 months apart and tested for IgE binding to intact peanut proteins via ImmunoCAP ISAC immunoassays.

View Article and Find Full Text PDF

Peanut and tree-nut allergies are frequently comorbid for reasons not completely understood. Vicilin-buried peptides (VBPs) are an emerging family of food allergens whose conserved structural fold could mediate peanut/tree-nut co-allergy. Peptide microarrays were used to identify immunoglobulin E (IgE) epitopes from the N-terminus of the vicilin allergens Ara h 1, Ana o 1, Jug r 2, and Pis v 3 using serum from three patient diagnosis groups: monoallergic to either peanuts or cashew/pistachio, or dual allergic.

View Article and Find Full Text PDF

Non-specific lipid transfer proteins (LTPs) are well studied allergens that can lead to severe reactions, but often cause oral allergy syndrome in the Mediterranean area and other European countries. However, studies focused on LTP reactivity in allergic individuals from the United States are lacking because they are not considered major allergens. The goal of this study is to determine if differences in immunoglobulin (Ig) E binding patterns to the peanut allergen Ara h 9 and two homologous LTPs (walnut Jug r 3 and peach Pru p 3) between the US and Spain contribute to differences observed in allergic reactivity.

View Article and Find Full Text PDF

Vicilin-buried peptides (VBPs) from edible plants are derived from the N-terminal leader sequences (LSs) of seed storage proteins. VBPs are defined by a common α-hairpin fold mediated by conserved CxxxCxCxxxC motifs. Here, peanut and walnut VBPs were characterized as potential mediators of both peanut/walnut allergenicity and cross-reactivity despite their low (∼17%) sequence identity.

View Article and Find Full Text PDF

Many allergens feature hydrophobic cavities that allow the binding of primarily hydrophobic small-molecule ligands. Ligand-binding specificities can be strict or promiscuous. Serum albumins from mammals and birds can assume multiple conformations that facilitate the binding of a broad spectrum of compounds.

View Article and Find Full Text PDF

Background: Peanut is a potent inducer of proallergenic T2 responses in susceptible individuals. Antigen-presenting cells (APCs) including dendritic cells and monocytes instruct naive T cells to differentiate into various effector cells, determining immune responses such as allergy and tolerance.

Objective: We sought to detect peanut protein (PN)-induced changes in gene expression in human myeloid dendritic cells (mDCs) and monocytes, identify signaling receptors that mediate these changes, and assess how PN-induced genes in mDCs impact their ability to promote T-cell differentiation.

View Article and Find Full Text PDF

Many individuals with peanut (PN) allergy have severe reactions to tree nuts (TN) such as walnuts or cashews. Although allergenic proteins in TN and PN have overall low identity, they share discrete sequences similar in physicochemical properties (PCP) to known IgE epitopes. Here, PCP-consensus peptides (cp, 13 aa and 31 aa) were identified from an alignment of epitope rich regions of walnut vicilin, Jug r 2, leader sequence (J2LS) and cross-reactive epitopes in the 2S albumins of peanut and synthesized.

View Article and Find Full Text PDF

Food allergies are a major clinical problem and are driven by IgE antibodies (Abs) specific for food antigens (Ags). T follicular regulatory (Tfr) cells are a specialized subset of FOXP3+ T cells that modulate Ab responses. Here, we analyzed the role of Tfr cells in regulating Ag-specific IgE using a peanut-based food allergy model in mice.

View Article and Find Full Text PDF

Background: Understanding the discrepancy between IgE sensitization and allergic reactions to peanut could facilitate diagnosis and lead to novel means of treating peanut allergy.

Objective: To identify differences in IgE and IgG4 binding to peanut peptides between peanut-allergic (PA) and peanut-sensitized but tolerant (PS) children.

Methods: PA (n = 56), PS (n = 42) and nonsensitized nonallergic (NA, n = 10) patients were studied.

View Article and Find Full Text PDF

Oral allergy syndrome (OAS) describes an allergic reaction where an individual sensitized by pollen allergens develops symptoms after eating certain foods. OAS is caused by cross-reactivity among a class of proteins ubiquitous in plants called pathogenesis related class 10 (PR-10) proteins. The best characterized PR-10 protein is Bet v 1 from birch pollen and its putative function is binding hydrophobic ligands.

View Article and Find Full Text PDF

Roasting is known to change the allergenic properties of peanuts. To study these observations at a molecular level, the relationship of IgE binding to the structure of Ara h 3 from raw and roasted peanuts was assessed. Ara h 3 (A3) was purified from raw (R), light roast (LR) and dark roast (DR) peanuts, the purity was assessed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the secondary structures were compared with circular dichroism (CD) spectroscopy.

View Article and Find Full Text PDF

Quantitative guidelines to distinguish allergenic proteins from related, but non-allergenic ones are urgently needed for regulatory agencies, biotech companies and physicians. In a previous study, we found that allergenic proteins populate a relatively small number of protein families, as characterized by the Pfam database. However, these families also contain non-allergenic proteins, meaning that allergenic determinants must lie within more discrete regions of the sequence.

View Article and Find Full Text PDF

For years, the use of polyhistidine tags (His-tags) has been a staple in the isolation of recombinant proteins in immobilized metal affinity chromatography experiments. Their usage has been widely beneficial in increasing protein purity from crude cell lysates. For some recombinant proteins, a consequence of His-tag addition is that it can affect protein function and stability.

View Article and Find Full Text PDF

Octopus is an important mollusk in human dietary for its nutritional value, however it also causes allergic reactions in humans. Major allergens from octopus have been identified, while the knowledge of novel allergens remains poor. In the present study, a novel allergen with molecular weight of 28kDa protein was purified from octopus (Octopus fangsiao) and identified as triosephosphate isomerase (TIM) by mass spectrometry.

View Article and Find Full Text PDF

The dry roasting of peanuts is suggested to influence allergic sensitization as a result of the formation of advanced glycation end products (AGEs) on peanut proteins. Identifying AGEs is technically challenging. The AGEs of a peanut allergen were probed with nano-scale liquid chromatography-electrospray ionization-mass spectrometry (nanoLC-ESI-MS) and tandem mass spectrometry (MS/MS) analyses.

View Article and Find Full Text PDF

Peanut allergy is an IgE-mediated adverse reaction to a subset of proteins found in peanuts. Immunotherapy aims to desensitize allergic patients through repeated and escalating exposures for several months to years using extracts or flours. The complex mix of proteins and variability between preparations complicates immunotherapy studies.

View Article and Find Full Text PDF

Allergic reactions to food are on the rise worldwide and there is a corresponding increase in interest to understand the molecular mechanisms responsible. Peanut allergies are the most problematic because the reaction often persists into adulthood and can be as severe as anaphylaxis and death The purpose of the work presented here was to develop a reproducible method to produce large quantities of pure recombinant Ara h 1(rAra h 1) that will enable standardization of immunological tests for patients and allow structural and immunological studies on the wild type and mutagenized forms of the protein. Ara h 1 is initially a pre-pro-protein which, following two endoproteolytic cleavages, becomes the mature form found in peanut.

View Article and Find Full Text PDF

It has been suggested that the boiling or frying of peanuts leads to less allergenic products than roasting. Here, we have compared the digestibility of the major peanut allergens in the context of peanuts subjected to boiling, frying or roasting and in purified form. The soluble peanut extracts and the purified allergens were digested with either trypsin or pepsin and analyzed by gel electrophoresis and western blot.

View Article and Find Full Text PDF

The incidence of peanut allergy continues to rise in the United States and Europe. Whereas exposure to the major allergens Ara h 1, 2, 3, and 6 can cause fatal anaphylaxis, exposure to the minor allergens usually does not. Ara h 8 is a minor allergen.

View Article and Find Full Text PDF

Scope: The aims of this study were to evaluate IgE-mediated hypersensitivity to pine nut with details of clinical reactions and to characterize major pine nut allergens.

Methods And Results: The study included ten consecutive teenagers and adults diagnosed with IgE-mediated clinical allergy to pine nut. Two major pine nut allergens were purified and identified and the secondary structures and susceptibility to digestion were characterized.

View Article and Find Full Text PDF

Scope: Ara h 1 from roasted peanut binds higher levels of serum immunoglobulin E than raw peanuts and this is likely due to the Maillard reaction. While Ara h 1 linear IgE epitopes have been mapped, the presence and importance of structural epitopes is not clear.

Methods And Results: Mass spectrometry, immunoblot, ELISA, circular dichroism (CD), and structural analysis were used to compare structural and subsequent IgE-binding differences in Ara h 1 purified from raw (N) and roasted peanuts (R) and denatured Ara h 1 (D).

View Article and Find Full Text PDF

Allergic reactions to peanuts and tree nuts are major causes of anaphylaxis in the United States. We compare different properties of natural and recombinant versions of Ara h 1, a major peanut allergen, through structural, immunologic, and bioinformatics analyses. Small angle x-ray scattering studies show that natural Ara h 1 forms higher molecular weight aggregates in solution.

View Article and Find Full Text PDF

As peanut allergy is an increasing public health risk, affecting over 1% of the United States and United Kingdom school children, it is important that methods and reagents for accurate diagnosis of food allergy and detection of allergenic foods are reliable and consistent. Given that most current experimental, diagnostic, and detection tests rely on the presence of soluble allergens in food extracts, we investigated the effects of thermal processing on the solubility and IgE binding of the major peanut allergens, Ara h 1 and Ara h 2. The soluble and insoluble fractions of peanuts that were boiled, fried, and roasted were subjected to electrophoresis and Western blot analysis using anti-Ara h 1 and anti-Ara h 2 antibodies and serum IgE from peanut allergic individuals.

View Article and Find Full Text PDF

Staphylococcus aureus produces a wide array of virulence factors and causes a correspondingly diverse array of infections. Production of these virulence factors is under the control of a complex network of global regulatory elements, one of which is sarA. sarA encodes a DNA binding protein that is considered to function as a transcription factor capable of acting as either a repressor or an activator.

View Article and Find Full Text PDF

The majority of foods that we eat are subjected to some type of processing either at home or by the manufacturer. The biochemical reactions that occur in foods as a result of thermal processing can be both beneficial and harmful. Here, we briefly review the effects of thermal processing and some of the effects of the Maillard reaction on the allergenicity of food proteins.

View Article and Find Full Text PDF