Adrenocorticotropic hormone 1-24 (ACTH[1-24]) has a similar effect as endogenous ACTH(1-39) to generate cortisol by targeting the MC2R receptor on the adrenal gland. A new investigational ACTH receptor antagonist drug is being developed to treat diseases of ACTH excess (e.g.
View Article and Find Full Text PDFThe overexpression of fibroblast activation protein-α (FAP) in solid cancers relative to levels in normal tissues has led to its recognition as a target for delivering agents directly to tumors. Radiolabeled quinoline-based FAP ligands have established clinical feasibility for tumor imaging, but their therapeutic potential is limited due to suboptimal tumor retention, which has prompted the search for alternative pharmacophores. One such pharmacophore is the boronic acid derivative -(pyridine-4-carbonyl)-d-Ala-boroPro, a potent and selective FAP inhibitor (FAPI).
View Article and Find Full Text PDFNon-specific binding in metabolism systems leads to an underestimation of the true intrinsic metabolic clearance of compounds being studied. Therefore binding needs to be accounted for when extrapolating data to predict the metabolic clearance of a compound. While techniques exist for experimentally determining the fraction of a compound unbound in metabolism systems, early in drug discovery programmes computational approaches are often used to estimate the binding in the system.
View Article and Find Full Text PDFLow-flow chromatography has a rich history of innovation but has yet to reach widespread implementation in bioanalytical applications. Improvements in pump technology, microfluidic connections, and nano-electrospray sources for MS have laid the groundwork for broader application, and innovation in this space has accelerated in recent years. This article reviews the instrumentation used for nano-flow LC, the types of columns employed, and strategies for multidimensionality of separations, which are key to the future state of the technique to the high-throughput needs of modern bioanalysis.
View Article and Find Full Text PDFThe Canadian Real-world Evidence for Value in Cancer Drugs (CanREValue) Collaboration was established to develop a framework for generating and using real-world evidence (RWE) to inform the reassessment of cancer drugs following initial health technology assessment (HTA). The Reassessment and Uptake Working Group (RWG) is one of the five established CanREValue Working Groups. The RWG aims to develop considerations for incorporating RWE for HTA reassessment and strategies for using RWE to reassess drug funding decisions.
View Article and Find Full Text PDFInconsistencies in pharmacokinetic parameters between individual animals in preclinical studies are a common occurrence. Often such differences between animals are simply accepted as experimental variability rather than as indications of specific differences in animal phenotype that could lead to a different interpretation of the data. The fraction unbound in plasma is one factor influencing pharmacokinetic parameters and is typically determined using pooled plasma from multiple animals, making the assumption that there is limited population variance.
View Article and Find Full Text PDFA novel LC-MS/MS method using a surrogate matrix and derivatization with fluorescamine was developed and validated for simultaneous quantification of asymmetric dimethyl arginine and symmetric dimethyl arginine. Asymmetric dimethyl arginine, symmetric dimethyl arginine and corresponding internal standards were extracted using protein precipitation and derivatization with fluorescamine followed by SPE. Derivatives were analyzed by turbo ion spray LC-MS/MS in the positive ion mode.
View Article and Find Full Text PDFTranslational and ADME Sciences Leadership Group Induction Working Group (IWG) presents an analysis on the time course for cytochrome P450 induction in primary human hepatocytes. Induction of CYP1A2, CYP2B6, and CYP3A4 was evaluated by seven IWG laboratories after incubation with prototypical inducers (omeprazole, phenobarbital, rifampicin, or efavirenz) for 6-72 hours. The effect of incubation duration and model-fitting approaches on induction parameters (E and EC) and drug-drug interaction (DDI) risk assessment was determined.
View Article and Find Full Text PDFAldehyde oxidase (AO) efficiently metabolizes a range of compounds with N-containing heterocyclic aromatic rings and/or aldehydes. The limited knowledge of AO activity and abundance (in vitro and in vivo) has led to poor prediction of in vivo systemic clearance (CL) using in vitro-to-in vivo extrapolation approaches, which for drugs in development can lead to their discontinuation. We aimed to identify appropriate scaling factors to predict AO CL of future new chemical entities (NCEs).
View Article and Find Full Text PDFRecent advancements in immunocapture methods and mass spectrometer technology have enabled intact protein mass spectrometry to be applied for the characterization of antibodies and other large biotherapeutics from in-life studies. Protein molecules have not been traditionally studied by intact mass or screened for catabolites in the same manner as small molecules, but the landscape has changed. Researchers have presented methods that can be applied to the drug discovery and development stages, and others are exploring the possibilities of the new approaches.
View Article and Find Full Text PDFCytochrome P450 (CYP) 3A4 induction is an important cause of drug-drug interactions, making early identification of drug candidates with CYP3A4 induction liability in drug development a prerequisite. Here, we present three-dimensional (3D) spheroid cultures of primary human hepatocytes (PHHs) as a novel CYP3A4 induction screening model. Screening of 25 drugs (12 known CYP3A4 inducers in vivo and 13 negative controls) at physiologically relevant concentrations revealed a 100% sensitivity and 100% specificity of the system.
View Article and Find Full Text PDFBackground: DMPK data and knowledge are critical in maximising the probability of developing successful drugs via the application of in silico, in vitro and in vivo approaches in drug discovery.
Methods: The evaluation, optimisation and prediction of human pharmacokinetics is now a mainstay within drug discovery. These elements are at the heart of the 'right tissue' component of AstraZeneca's '5Rs framework' which, since its adoption, has resulted in increased success of Phase III clinical trials.
Immunoaffinity-mass spectrometry (IA-MS) is an emerging analytical genre with several advantages for profiling and determination of protein biomarkers. Because IA-MS combines affinity capture, analogous to ligand binding assays (LBAs), with mass spectrometry (MS) detection, this platform is often described using the term hybrid methods. The purpose of this report is to provide an overview of the principles of IA-MS and to demonstrate, through application, the unique power and potential of this technology.
View Article and Find Full Text PDFRationale: To capture all metabolites in metabolite identification studies, MS/MS information is required in both positive and negative ionization mode, usually involving several sample injections to gain all information about samples. A high-resolution and high mass accuracy quadrupole/linear trap/Orbitrap tribrid instrument was used to gain this information in a novel single injection 'capture-all' approach to metabolite identification.
Methods: Diclofenac, a model compound, was incubated in human and rat hepatocytes.
The 2019 13 Workshop on Recent Issues in Bioanalysis (WRIB) took place in New Orleans, LA, USA on April 1-5, 2019 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers, immunogenicity and gene therapy. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS, LBA cell-based/flow cytometry assays and qPCR approaches.
View Article and Find Full Text PDFNonclinical rodent and nonrodent toxicity models used to support clinical trials of candidate drugs may produce discordant results or fail to predict complications in humans, contributing to drug failures in the clinic. Here, we applied microengineered Organs-on-Chips technology to design a rat, dog, and human Liver-Chip containing species-specific primary hepatocytes interfaced with liver sinusoidal endothelial cells, with or without Kupffer cells and hepatic stellate cells, cultured under physiological fluid flow. The Liver-Chip detected diverse phenotypes of liver toxicity, including hepatocellular injury, steatosis, cholestasis, and fibrosis, and species-specific toxicities when treated with tool compounds.
View Article and Find Full Text PDFThe 2018 12 Workshop on Recent Issues in Bioanalysis (12th WRIB) took place in Philadelphia, PA, USA on April 9-13, 2018 with an attendance of over 900 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day full immersion in bioanalysis, biomarkers and immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LC-MS, hybrid ligand binding assay (LBA)/LC-MS and LBA/cell-based assays approaches.
View Article and Find Full Text PDFAZD9496 ((E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid) is an oral selective estrogen receptor degrader currently in clinical development for treatment of estrogen receptor-positive breast cancer. In a first-in-human phase 1 study, AZD9496 exhibited dose nonlinear pharmacokinetics, the mechanistic basis of which was investigated in this study. The metabolism kinetics of AZD9496 were studied using human liver microsomes (HLMs), recombinant cytochrome P450s (rP450s), and hepatocytes.
View Article and Find Full Text PDFOur recent paper demonstrated the ability to predict in vivo clearance of flavin-containing monooxygenase (FMO) drug substrates using in vitro human hepatocyte and human liver microsomal intrinsic clearance with standard scaling approaches. In this paper, we apply a physiologically based pharmacokinetic (PBPK) modeling and simulation approach (M&S) to predict the clearance, area under the curve (AUC), and values together with the plasma profile of a range of drugs from the original study. The human physiologic parameters for FMO, such as enzyme abundance in liver, kidney, and gut, were derived from in vitro data and clinical pharmacogenetics studies.
View Article and Find Full Text PDFDrug Metab Dispos
August 2018
Drug-induced cardiotoxicity may be modulated by endogenous arachidonic acid (AA)-derived metabolites known as epoxyeicosatrienoic acids (EETs) synthesized by cytochrome P450 2J2 (CYP2J2). The biologic effects of EETs, including their protective effects on inflammation and vasodilation, are diverse because, in part, of their ability to act on a variety of cell types. In addition, CYP2J2 metabolizes both exogenous and endogenous substrates and is involved in phase 1 metabolism of a variety of structurally diverse compounds, including some antihistamines, anticancer agents, and immunosuppressants.
View Article and Find Full Text PDFAim: Recombinant FGF21 analogs are under wide ranging investigations as a potential therapeutic agent for Type 2 diabetes, as well as other metabolic disorders. The endogenous FGF21 is often used as a surrogate pharmacodynamic(PD) biomarker to assess drug efficacy and safety. Results & methodology: Immunocapture was performed using a monoclonal antibody which had been generated to bind to specific domain of native FGF21 as the capture reagent.
View Article and Find Full Text PDFThe 2017 11th Workshop on Recent Issues in Bioanalysis (11th WRIB) took place in Los Angeles/Universal City, California from 3 April 2017 to 7 April 2017 with participation of close to 750 professionals from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, weeklong event - A Full Immersion Week of Bioanalysis, Biomarkers and Immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small and large molecule analysis involving LCMS, hybrid LBA/LCMS and ligand-binding assay (LBA) approaches.
View Article and Find Full Text PDF