Dysfunctions in memory recall lead to pathological fear; a hallmark of trauma-related disorders, like posttraumatic stress disorder (PTSD). Both, heightened recall of an association between a cue and trauma, as well as impoverished recall that a previously trauma-related cue is no longer a threat, result in a debilitating fear toward the cue. Glucocorticoid-mediated action via the glucocorticoid receptor (GR) influences memory recall.
View Article and Find Full Text PDFThe cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel central to the development of secretory diarrhea and cystic fibrosis. The oldest CFTR ortholog identified is from dogfish shark, which retains similar structural and functional characteristics to the mammalian protein, thereby highlighting CFTR's critical role in regulating epithelial ion transport in vertebrates. However, the identification of an early CFTR ortholog with altered structure or function would provide critical insight into the evolution of epithelial anion transport.
View Article and Find Full Text PDFVX-770 (ivacaftor) is approved for clinical use in CF patients bearing multiple CFTR mutations. VX-770 potentiated wildtype CFTR and several disease mutants expressed in oocytes in a manner modulated by PKA-mediated phosphorylation. Potentiation of some other mutants, including G551D-CFTR, was less dependent upon the level of phosphorylation, likely related to the severe gating defects in these mutants exhibited in part by a shift in PKA sensitivity to activation, possibly due to an electrostatic interaction of D551 with K1250.
View Article and Find Full Text PDFFishes rely on both chemical and tactile senses to orient themselves to avoid predators, and to detect and taste food. This is likely achieved by highly coordinated reception of signals by mechano- and chemosensory receptors in fish. A small co-receptor from zebrafish, receptor activity modifying protein (RAMP)-like triterpene glycoside receptor (RL-TGR), was previously found to be involved in recognition of triterpene glycosides, a family of naturally occurring compounds that act as chemical defenses in various prey species.
View Article and Find Full Text PDFCystic fibrosis-related diabetes is the most common comorbidity associated with cystic fibrosis (CF) and correlates with increased rates of lung function decline. Because glucose is a nutrient present in the airways of patients with bacterial airway infections and because insulin controls glucose metabolism, the effect of insulin on CF airway epithelia was investigated to determine the role of insulin receptors and glucose transport in regulating glucose availability in the airway. The response to insulin by human airway epithelial cells was characterized by quantitative PCR, immunoblot, immunofluorescence, and glucose uptake assays.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2016
VX-770 (Ivacaftor) has been approved for clinical usage in cystic fibrosis patients with several CFTR mutations. Yet the binding site(s) on CFTR for this compound and other small molecule potentiators are unknown. We hypothesize that insight into this question could be gained by comparing the effect of potentiators on CFTR channels from different origins, e.
View Article and Find Full Text PDFEmbryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous nonprotein antioxidant defense molecule is the tripeptide glutathione (γ-glutamylcysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood.
View Article and Find Full Text PDFCell Mol Biol Lett
March 2011
Development is an orderly process that requires the timely activation and/or deactivation of specific regulatory elements that control cellular proliferation, differentiation and apoptosis. While many studies have defined factors that control developmental signaling, the role of intracellular reduction/oxidation (redox) status as a means to control differentiation has not been fully studied. Redox states of intracellular couples may play a very important role in regulating redox-sensitive elements that are involved in differentiation signaling into specific phenotypes.
View Article and Find Full Text PDFOxidized extracellular redox states have been associated with many diseases related to obesity, including heart disease and diabetes, but relatively little is known about the relationship between extracellular redox states and obesity. In 3T3-L1 preadipocytes, oxidizing extracellular redox potentials (E(h)) increased intracellular and mitochondrial reactive oxygen species (ROS) production. 3T3-L1 adipocytes showed a greater response to extracellular E(h), producing more intracellular ROS, than preadipocytes.
View Article and Find Full Text PDFCell Biol Toxicol
December 2010
Tert-butylhydroquinone (tBHQ), the major metabolite of butylated hydroxyanisole, induces an antioxidant response through the redox-sensitive transcription factor, nuclear factor-E2-related factor-2 (Nrf2). However, the mechanism by which tBHQ induces Nrf2 activity is not entirely understood. Here, we show that tBHQ preferentially alters the redox status in the mitochondrial compartment in HeLa cells.
View Article and Find Full Text PDFThe redox status of the extracellular compartment has only just been elucidated as a mechanism controlling intracellular signal transduction and correlates with aging, diabetes, heart disease and lung fibrosis. In the present paper, we describe a mechanism by which oxidizing extracellular environments, as maintained by the cysteine/cystine (Cys/CySS) redox couple, induce mitochondria-derived ROS (reactive oxygen species) generation and cause the activation of Nrf2 (nuclear factor-erythroid 2-related factor 2), inducing an antioxidant response. NIH 3T3 cells were cultured in medium with extracellular Cys/CySS redox potentials (Eh), ranging from 0 to -150 mV.
View Article and Find Full Text PDFNucleic Acids Res
December 2007
HU is one of the most abundant DNA binding proteins in Escherichia coli. We find that it binds strongly to DNA containing an abasic (AP) site or tetrahydrofuran (THF) (apparent K(d) approximately 50 nM). It also possesses an AP lyase activity that cleaves at a deoxyribose but not at a THF residue.
View Article and Find Full Text PDFClosely opposed lesions form a unique class of DNA damage that is generated by ionizing radiation. Improper repair of closely opposed lesions could lead to the formation of double strand breaks that can result in increased lethality and mutagenesis. In vitro processing of closely opposed lesions was studied using double-stranded DNA containing a nick in close proximity opposite to a dihydrouracil.
View Article and Find Full Text PDFTwo candidate human orthologs of Escherichia coli MutM/Nei were recently identified in the human genome database, and one of these, NEH1, was characterized earlier (Hazra, T. K., Izumi, T.
View Article and Find Full Text PDF8-oxoguanine (8-oxoG), ring-opened purines (formamidopyrimidines or Fapys), and other oxidized DNA base lesions generated by reactive oxygen species are often mutagenic and toxic, and have been implicated in the etiology of many diseases, including cancer, and in aging. Repair of these lesions in all organisms occurs primarily via the DNA base excision repair pathway, initiated with their excision by DNA glycosylase/AP lyases, which are of two classes. One class utilizes an internal Lys residue as the active site nucleophile, and includes Escherichia coli Nth and both known mammalian DNA glycosylase/AP lyases, namely, OGG1 and NTH1.
View Article and Find Full Text PDF