Microplastics in sediment cores from urban tidal tributaries, Barking and Bow Creek-London and salt marshes Swanscombe, Kent, and Rainham, Essex, Thames estuary (UK), were quantified by density separation and ATR-FTIR spectroscopy. All eight tributary cores were dominated by low-density microplastics, polypropylene, polyethylene, and polystyrene with the greatest abundance (mean 360.0 ± 12.
View Article and Find Full Text PDFMicroplastics at 10 sites along a 77 km transect of the river Thames estuary (UK) and 5 sites along 29 km of the Medway estuary were separated from sediment and analysed by ATR-FTIR spectroscopy. Microplastics were observed at all sites. Highest Thames concentrations were in urban London between Chelsea and West Thurrock (average 170.
View Article and Find Full Text PDFSeddon and Zimmermann have raised questions about the evidence for increased UV-B flux across the end-Permian mass extinction (EPME) that was presented in our recent study, specifically regarding the measurement of UV-B-absorbing compound (UAC) levels in fossil pollen. We respond to these points, arguing that the comparison of FTIR spectra of >250 million-year-old Permian fossil pollen with ~700-year-old subfossil pollen is not valid and that negligible nonrandom interference derived from water vapor fluctuations during data generation cannot coincidentally produce a substantial UAC peak during the EPME. Furthermore, we refute the suggestion that the measured aromatic peak at 1600 cm could have been influenced by diagenetic products from other organic constituents of pollen.
View Article and Find Full Text PDFAs a non-invasive imaging technique, this study explores the application of Computed Tomography (CT) in microplastics research, assessing its potential to distinguish different types and sizes of microplastics (polypropylene, polyethylene terephthalate, polyethylene, and polyvinyl chloride) from homogenised river-estuarine sediment. When examined in layers within artificial cores, all microplastic types could be observed by CT imagery, with good contrast in X-ray attenuation (based on image gray level intensity) against background sediments. Large microplastics (4 mm diameter) were also detectable when distributed randomly amongst the sediment.
View Article and Find Full Text PDFLand plants can adjust the concentration of protective ultraviolet B (UV-B)-absorbing compounds (UACs) in the outer wall of their reproductive propagules in response to ambient UV-B flux. To infer changes in UV-B radiation flux at Earth's surface during the end-Permian mass extinction, we analyze UAC abundances in ca. 800 pollen grains from an independently dated Permian-Triassic boundary section in Tibet.
View Article and Find Full Text PDFThe emergence of forests on Earth (~385 million years ago, Ma) has been linked to an order-of-magnitude decline in atmospheric CO levels and global climatic cooling by altering continental weathering processes, but observational constraints on atmospheric CO before the rise of forests carry large, often unbound, uncertainties. Here, we calibrate a mechanistic model for gas exchange in modern lycophytes and constrain atmospheric CO levels 410-380 Ma from related fossilized plants with bound uncertainties of approximately ±100 ppm (1 sd). We find that the atmosphere contained ~525-715 ppm CO before continents were afforested, and that Earth was partially glaciated according to a palaeoclimate model.
View Article and Find Full Text PDFLitterfall is a critical link between vegetation and soils by which nutrients are returned to the soils, thus the amount and pattern of litterfall regulates nutrient cycling, soil fertility and primary productivity for most terrestrial ecosystems. We quantified, analyzed and compared macro- and micro-nutrients return through litterfall in organic and conventional cocoa agroforestry systems in Suhum, Ghana. We further assessed the contribution of shade tree species to litterfall and nutrient dynamics.
View Article and Find Full Text PDFTropical peatlands are globally important source of greenhouse gases to the atmosphere, but data on carbon fluxes from these ecosystems is limited due to the logistical challenges of measuring gas fluxes in these ecosystems. Proposals to overcome the difficulties of measuring gas carbon fluxes in the tropics include remote sensing (top-down) approaches. However, these require information on the effect of vegetation communities on carbon dioxide (CO) and methane (CH) fluxes from the peat surface (bottom-up).
View Article and Find Full Text PDFCocoa agroforestry systems have the potential to conserve biodiversity and provide environmental or ecological benefits at various nested scales ranging from the plot to ecoregion. While integrating organic practices into cocoa agroforestry may further enhance these potentials, empirical and robust data to support this claim is lacking, and mechanisms for biodiversity conservation and the provision of environmental and ecological benefits are poorly understood. A field study was conducted in the Eastern Region of Ghana to evaluate the potential of organic cocoa agroforests to conserve native floristic diversity in comparison with conventional cocoa agroforests.
View Article and Find Full Text PDFTracking changes in biodiversity through time requires an understanding of the relationship between modern diversity and how this diversity is preserved in the fossil record. Fossil pollen is one way in which past vegetation diversity can be reconstructed. However, there is limited understanding of modern pollen-vegetation diversity relationships from biodiverse tropical ecosystems.
View Article and Find Full Text PDFSolar ultraviolet (UV) irradiance is a key driver of climatic and biotic change. Ultraviolet irradiance modulates stratospheric warming and ozone production, and influences the biosphere from ecosystem-level processes through to the largest scale patterns of diversification and extinction. Yet our understanding of ultraviolet irradiance is limited because no method has been validated to reconstruct its flux over timescales relevant to climatic or biotic processes.
View Article and Find Full Text PDFInvestigations were undertaken in the context of the potential environmental impact of carbon capture and storage (CCS) transportation in the form of a hypothetical leak of extreme levels of CO into the soil environment and subsequent effects on plant physiology. Laboratory studies using purpose built soil chambers, separating and isolating the soil and aerial environments, were used to introduce high levels of CO gas exclusively into the rhizosphere. CO concentrations greater than 32% in the isolated soil environment revealed a previously unknown whole plant stomatal response.
View Article and Find Full Text PDFDespite more than a century of research, some key aspects of habitat preference and ecology of the earliest angiosperms remain poorly constrained. Proposed growth ecology has varied from opportunistic weedy species growing in full sun to slow-growing species limited to the shaded understorey of gymnosperm forests. Evidence suggests that the earliest angiosperms possessed low transpiration rates: gas exchange rates for extant basal angiosperms are low, as are the reconstructed gas exchange rates for the oldest known angiosperm leaf fossils.
View Article and Find Full Text PDFThe strong positive relationship evident between cell and genome size in both animals and plants forms the basis of using the size of stomatal guard cells as a proxy to track changes in plant genome size through geological time. We report for the first time a taxonomic fine-scale investigation into changes in stomatal guard-cell length and use these data to infer changes in genome size through the evolutionary history of land plants. Our data suggest that many of the earliest land plants had exceptionally large genome sizes and that a predicted overall trend of increasing genome size within individual lineages through geological time is not supported.
View Article and Find Full Text PDFBiochemical changes in vivo and pathway interactions were investigated using integrated physiological and metabolic responses of Arabidopsis thaliana L. to ultraviolet (UV) radiation (280-400 nm) at 9.96 kJ m(-2) d(-1) over the entire life cycle from seed to seed (8 weeks).
View Article and Find Full Text PDFThe recent discovery of a strong positive relationship between angiosperm genome size and stomatal guard cell length (GCL) opens the possibility of using plant fossil guard cell size as a proxy for changes in angiosperm genome size over periods of environmental change. The responses of GCL to environmental stimuli are currently unknown and may obscure this predictive relationship. Here, we investigated the effects of environmental variables (atmospheric CO2, drought, relative humidity, irradiance, ultraviolet radiation and pathogen attack) on GCL in the model plant Arabidopsis thaliana to quantify environmentally induced variation.
View Article and Find Full Text PDFSpore chemistry is at the centre of investigations aimed at producing a proxy record of harmful ultraviolet radiation (UV-B) through time. A biochemical proxy is essential owing to an absence of long-term (century or more) instrumental records. Spore cell material contains UV-B absorbing compounds that appear to be synthesised in variable amounts dependent on the ambient UV-B flux.
View Article and Find Full Text PDF