Publications by authors named "Barry Ganetzky"

Traumatic brain injury (TBI) outcomes vary greatly among individuals, but most of the variation remains unexplained. Using a Drosophila melanogaster TBI model and 178 genetically diverse lines from the Drosophila Genetic Reference Panel (DGRP), we investigated the role that genetic variation plays in determining TBI outcomes. Following injury at 20-27 days old, DGRP lines varied considerably in mortality within 24 h ("early mortality").

View Article and Find Full Text PDF
Article Synopsis
  • Traumatic brain injury (TBI) can lead to issues like increased intestinal permeability, and studies show that the beta-blocker drug labetalol can help reduce this effect in rats.
  • Research using a fly model of TBI found that feeding flies beta-blockers (labetalol and metoprolol) decreased intestinal permeability, but only metoprolol showed an effect when analyzing multiple fly lines, and neither drug affected mortality rates.
  • The findings suggest that the relationship between disrupted intestinal barriers and TBI is similar across species, highlighting the utility of flies as a model for understanding how brain and intestinal signaling is affected after TBI in humans.
View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a common neurological disorder whose outcomes vary widely depending on a variety of environmental factors, including diet. Using a Drosophila melanogaster TBI model that reproduces key aspects of TBI in humans, we previously found that the diet consumed immediately following a primary brain injury has a substantial effect on the incidence of mortality within 24 h (early mortality). Flies that receive equivalent primary injuries have a higher incidence of early mortality when fed high-carbohydrate diets versus water.

View Article and Find Full Text PDF

Blunt force injuries are a significant cause of disability and death worldwide. Here, we describe a model of blunt force injury that can be used to investigate cellular and molecular mechanisms that underlie the short-term and long-term effects of injuries sustained at a juvenile stage of development. Injuries inflicted in late third-instar larvae using the spring-based High-Impact Trauma (HIT) device robustly activated the humoral defense response process of melanization and caused larval and pupal lethality.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) pathologies are caused by primary and secondary injuries. Primary injuries result from physical damage to the brain, and secondary injuries arise from cellular responses to primary injuries. A characteristic cellular response is sustained activation of inflammatory pathways commonly mediated by nuclear factor-κB (NF-κB) transcription factors.

View Article and Find Full Text PDF

Background: General anesthetics influence mitochondrial homeostasis, placing individuals with mitochondrial disorders and possibly carriers of recessive mitochondrial mutations at increased risk of perioperative complications. In Drosophila, mutations in the ND23 subunit of complex I of the mitochondrial electron transport chain-analogous to mammalian NDUFS8-replicate key characteristics of Leigh syndrome, an inherited mitochondrial disorder. The authors used the ND23 mutant for testing the hypothesis that anesthetics have toxic potential in carriers of mitochondrial mutations.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers studied antimicrobial peptides (AMPs) in a closed-head TBI model, focusing on how mutations in certain AMP genes affect injury outcomes in fruit flies.
  • * Specific mutations provided protection against mortality and behavioral deficits after TBI, suggesting that these AMPs play a protective role in the nervous system independently of infection and are involved in injury pathways that relate to aging.
View Article and Find Full Text PDF

Synapses exhibit an astonishing degree of adaptive plasticity in healthy and disease states. We have investigated whether synapses also adjust to life stages imposed by novel developmental programs for which they were never molded by evolution. Under conditions in which larvae are terminally arrested, we have characterized synaptic growth, structure and function at the neuromuscular junction (NMJ).

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons, resulting in progressive locomotor dysfunction. Identification of genes required for the maintenance of these neurons should help to identify potential therapeutic targets. However, little is known regarding the factors that render dopaminergic neurons selectively vulnerable to PD.

View Article and Find Full Text PDF

A screen for neuroprotective genes in led to the identification of a mutation that causes extreme, progressive loss of adult brain neuropil in conjunction with massive brain overgrowth. We mapped the mutation to the () locus, which encodes a tripartite motif-NCL-1, HT2A, and LIN-41 (TRIM-NHL) RNA-binding protein with established roles limiting stem cell proliferation in developing brain and ovary. However, a neuroprotective role for in the adult brain has not been described previously.

View Article and Find Full Text PDF

Proper mitochondrial activity depends upon proteins encoded by genes in the nuclear and mitochondrial genomes that must interact functionally and physically in a precisely coordinated manner. Consequently, mito-nuclear allelic interactions are thought to be of crucial importance on an evolutionary scale, as well as for manifestation of essential biological phenotypes, including those directly relevant to human disease. Nonetheless, detailed molecular understanding of mito-nuclear interactions is still lacking, and definitive examples of such interactions are sparse.

View Article and Find Full Text PDF

Genetic variability affects the response to numerous xenobiotics but its role in the clinically-observed irregular responses to general anesthetics remains uncertain. To investigate the pharmacogenetics of volatile general anesthetics (VGAs), we developed a Serial Anesthesia Array apparatus to expose multiple Drosophila melanogaster samples to VGAs and behavioral assays to determine pharmacokinetic and pharmacodynamic properties of VGAs. We studied the VGAs isoflurane and sevoflurane in four wild type strains from the Drosophila Genetic Reference Panel, two commonly used laboratory strains (Canton S and w ), and a mutant in Complex I of the mitochondrial electron transport chain (ND23 ).

View Article and Find Full Text PDF

During aging, innate immunity progresses to a chronically active state. However, what distinguishes those that "age well" from those developing age-related neurological conditions is unclear. We used Drosophila to explore the cost of immunity in the aging brain.

View Article and Find Full Text PDF

Outcomes of traumatic brain injury (TBI) vary because of differences in primary and secondary injuries. Primary injuries occur at the time of a traumatic event, whereas secondary injuries occur later as a result of cellular and molecular events activated in the brain and other tissues by primary injuries. We used a Drosophila melanogaster TBI model to investigate secondary injuries that cause acute mortality.

View Article and Find Full Text PDF

Recent evidence indicates that protein aggregates can spread between neurons in several neurodegenerative diseases but much remains unknown regarding the underlying mechanisms responsible for this spreading and its role in disease progression. We recently demonstrated that mutant Huntingtin aggregates spread between cells within the Drosophila brain resulting in non-cell autonomous loss of a pair of large neurons in the posterior protocerebrum. However, the full extent of neuronal loss throughout the brain was not determined.

View Article and Find Full Text PDF

A key feature of many neurodegenerative diseases is the accumulation and subsequent aggregation of misfolded proteins. Recent studies have highlighted the transcellular propagation of protein aggregates in several major neurodegenerative diseases, although the precise mechanisms underlying this spreading and how it relates to disease pathology remain unclear. Here we use a polyglutamine-expanded form of human huntingtin (Htt) with a fluorescent tag to monitor the spreading of aggregates in the Drosophila brain in a model of Huntington's disease.

View Article and Find Full Text PDF

Cranial radiation therapy (CRT) is an effective treatment for pediatric central nervous system malignancies, but survivors often suffer from neurological and neurocognitive side effects that occur many years after radiation exposure. Although the biological mechanisms underlying these deleterious side effects are incompletely understood, radiation exposure triggers an acute inflammatory response that may evolve into chronic inflammation, offering one avenue of investigation. Recently, we developed a Drosophila model of the neurotoxic side effects of radiation exposure.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a complex disorder that affects millions of people worldwide. The complexity of TBI partly stems from the fact that injuries to the brain instigate non-neurological injuries to other organs such as the intestine. Additionally, genetic variation is thought to play a large role in determining the nature and severity of non-neurological injuries.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) affects millions of people each year, causing impairment of physical, cognitive, and behavioral functions and death. Studies using Drosophila have contributed important breakthroughs in understanding neurological processes. Thus, with the goal of understanding the cellular and molecular basis of TBI pathologies in humans, we developed the High Impact Trauma (HIT) device to inflict closed head TBI in flies.

View Article and Find Full Text PDF

Children undergoing cranial radiation therapy (CRT) for pediatric central nervous system malignancies are at increased risk for neurological deficits later in life. We have developed a model of neurotoxic damage in adult Drosophila following irradiation during the juvenile stages with the goal of elucidating underlying neuropathological mechanisms and of ultimately identifying potential therapeutic targets. Wild-type third-instar larvae were irradiated with single doses of γ-radiation, and the percentage that survived to adulthood was determined.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis.

View Article and Find Full Text PDF