Objective: With ageing of the Australian population, more people are living longer and experiencing chronic or complex health conditions. The challenge is to have information that supports the integration of services across the continuum of settings and providers, to deliver person-centred, seamless, efficient and effective healthcare. However, in Australia, data are typically siloed within health settings, precluding a comprehensive view of patient journeys.
View Article and Find Full Text PDFHuman-in-the-loop topic modeling allows users to explore and steer the process to produce better quality topics that align with their needs. When integrated into visual analytic systems, many existing automated topic modeling algorithms are given interactive parameters to allow users to tune or adjust them. However, this has limitations when the algorithms cannot be easily adapted to changes, and it is difficult to realize interactivity closely supported by underlying algorithms.
View Article and Find Full Text PDFScarcity of prospective medication non-adherence cost measurements for the Australian population with no directly measured estimates makes determining the burden medication non-adherence places on the Australian health care system difficult. This study aims to indirectly estimate the national cost of medication non-adherence in Australia comparing the cost prior to and following a community pharmacy-led intervention. Retrospective observational study.
View Article and Find Full Text PDFMedication non-adherence remains a significant problem for the health care system with clinical, humanistic and economic impact. Dispensing data is a valuable and commonly utilized measure due accessibility in electronic health data. The purpose of this study was to analyze the changes on adherence implementation rates before and after a community pharmacist intervention integrated in usual real life practice, incorporating big data analysis techniques to evaluate Proportion of Days Covered (PDC) from pharmacy dispensing data.
View Article and Find Full Text PDFComput Soc Netw
September 2017
Background: Community discovery is an important task for revealing structures in large networks. The massive size of contemporary social networks poses a tremendous challenge to the scalability of traditional graph clustering algorithms and the evaluation of discovered communities.
Methods: We propose a divide-and-conquer strategy to discover hierarchical community structure, nonoverlapping within each level.
BMC Bioinformatics
November 2007
Background: The construction of literature-based networks of gene-gene interactions is one of the most important applications of text mining in bioinformatics. Extracting potential gene relationships from the biomedical literature may be helpful in building biological hypotheses that can be explored further experimentally. Recently, latent semantic indexing based on the singular value decomposition (LSI/SVD) has been applied to gene retrieval.
View Article and Find Full Text PDF