IEEE J Sel Top Appl Earth Obs Remote Sens
October 2020
At NASA Goddard Space Flight Center, we have been developing spaceborne lidar instruments for space sciences. We have successfully flown several missions in the past based on mature diode pumped solid-state laser transmitters. In recent years, we have been developing advanced laser technologies for applications such as laser spectroscopy, laser communications, and interferometry.
View Article and Find Full Text PDFThe anti-cancer chemotherapeutic potential of 1,10-phenanthroline-5,6-dione (phendione), [Cu(phendione)(3)](ClO(4))(2).4H(2)O and [Ag(phendione)(2)]ClO(4) were determined using four human cells lines, i.e.
View Article and Find Full Text PDFThe chemotherapeutic potential of 1,10-phenanthroline (phen), and three of its transition metal complexes, namely [Cu(phen)(2)(mal)]x2H(2)O, [Mn(phen)(2)(mal)]x2H(2)O and [Ag(2)(phen)(3)(mal)]x2H(2)O (malH(2)=malonic acid) was determined using two human carcinoma cell lines (A-498 and Hep-G2). Phen and the three metal-phen complexes induced a concentration-dependent cytotoxic effect, with metal complexes demonstrating the greatest cytotoxic response. In comparative studies, IC(50) values show cytotoxicity of between 3 and 18 times greater than that observed for the metal-based anti-cancer agent, cisplatin.
View Article and Find Full Text PDFDeveloping small-molecule antagonists against protein-protein interactions will provide powerful tools for mechanistic/functional studies and the discovery of new antibacterials. We have developed a reverse yeast three-hybrid approach that allows high-throughput screening for antagonist peptides against essential protein-protein interactions. We have applied our methodology to the essential bacterial helicase-primase interaction in Bacillus stearothermophilus and isolated a unique antagonist peptide.
View Article and Find Full Text PDFThe Cu(II) and Ag(I) complexes, [Cu(phendio)3](ClO4)2 x 4H2O and [Ag(phendio)2]ClO4 (phendio = 1,10-phenanthroline-5,6-dione), are prepared in good yield by reacting phendio with the appropriate metal perchlorate salt. The X-ray crystal structure of the Ag(I) complex shows it to have a pseudo tetrahedral structure. 'Metal-free' phendio and the Cu(II) and Ag(I) phendio complexes strongly inhibit the growth of the fungal pathogen Candida albicans, and are more active than their 1,10-phenanthroline analogues.
View Article and Find Full Text PDF[Ag(2)(NH(3))(2)(salH)(2)] (salH(2)=salicylic acid) was synthesised from salicylic acid and Ag(2)O in concentrated aqueous NH(3) and the dimeric Ag(I) complex was characterised using X-ray crystallography. The complex is centrosymmetric with each metal coordinated to a salicylate carboxylate oxygen and to an ammonia nitrogen atom in an almost linear fashion. The two [Ag(NH(3))(salH)] units in the complex are linked by an Ag-Ag bond.
View Article and Find Full Text PDFGrowth of the pathogenic yeast Candida albicans in sub-MIC (minimum inhibitory concentration) levels of Cu(ClO4)2 6H2O and [Cu(phendio)3](ClO4)2 4H2O (phendio = 1,10-phenanthroline-5,6-dione) increased the concentration of miconazole and amphotericin B required to achieve the MIC90 whereas pre-growth in AgClO4 and [Ag(phendio)2]ClO4 resulted in a small decrease in the relevant MIC90 values. The copper complexes reduce the oxygen consumption of C. albicans while the silver complexes increase oxygen consumption.
View Article and Find Full Text PDF1,10-Phenanthroline (phen) and metal-phen complexes display fungicidal and fungiststic activity, disrupt mitochondrial function and induce oxidative stress. We have examined the effect of these drugs on the structure of yeast and mammalian cell organelles and the integrity of cellular DNA. Exposure of Candida albicans to [Mn(phen)2(mal)].
View Article and Find Full Text PDFThe mode of action of the anti-fungal compounds, 1,10-phenanthroline (phen), [Cu(phen)2(mal)] x 2H2O, [Mn(phen)2(mal)] x 2H2O and [Ag2(phen)3(mal)] x 2H2O (malH2 = malonic acid), was examined using the pathogenic yeast Candida albicans. The compounds have minimum inhibitory concentrations (MIC's) in the range 1.25-5.
View Article and Find Full Text PDF